Leere Seite: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
(15 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 
<span style="color:#F00">'''Seite noch im Aufbau!'''</span>
 
<span style="color:#F00">'''Seite noch im Aufbau!'''</span>
  
== Arbeitsaufträge für Fr., 04.03. ==
 
 
'''Zu bearbeiten: Am besten heute.'''<br>
 
'''Zur Bearbeitung benötig ihr das Schulbuch, einen Zettel, einen Stift und eine Internetverbindung um Videos zu schauen. Und Ruhe!'''<br>
 
'''Die Bearbeitungszeit sollte ca. 60 Minuten betragen.'''<br>
 
'''Die <span style="color:#070">optionalen Inhalte</span> sind nicht in die Bearbeitungszeit mit eingerechnet.'''<br>
 
<br>
 
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
<span style="color:#007">'''Worum geht´s`?'''</span><br>
+
<span style="color:#006">'''Aufgabe'''</span><br>
In den nächsten Wochen werden wir uns intensiv mit der Frage beschäftigen, wie es sein kann, dass ein Stück Erbgut überhaupt für ein bestimmtes Merkmal verantwortlich sein kein. Bildlich könnte man sich das ganze so vorstellen: Was passiert alles an der Stelle, an der im folgenden Bild der Pfeil mit dem Fragezeichen steht.<br>
+
Zunächst eine Aufgabe, die mit dem letzten Thema "Mutationen" zusammenhängt: <br>
 +
* Ein Mutationstyp wurde im Unterricht nicht besprochen: Die so genannte '''Rastermutation'''.
 +
* Bei einer Rastermutation wir eine Base (bzw. mehrere) zusätzlich in die DNA eingefügt (= '''Insertion''') oder eine Base (bzw. mehrere) entfernt (= '''Deletion''').
 +
* Dadurch wird ab diesem Punkt das gesamte '''Leseraster''' der DNA verschoben. Es kommt zur Bildung völlig anderer AS-Ketten, die so gut wie nie die Funktion des ursprünglichen Proteins erfüllen können.  
 +
* s. auch Buch: S. 76 letzter Absatz - S. 77 erster Absatz
 +
* ein Beispiel für einen chemischen Stoff, der in der Lage ist, eine Rastermutation zu verursachen, wäre z.B. [https://de.wikipedia.org/wiki/Ethidiumbromid Ethidiumbromid]
 
<br>
 
<br>
[[Datei:PBS_Einleitung_Problemstellung.jpg|800px]]<br>
+
Eine Beispielaufgabe:
Das Ganze ist nicht neu. Fast alles wurde bereits in der 9. Jahrgangsstufe besprochen (bzw. "sollte besprochen worden sein"). Vielleicht habt ihr die Stichworte '''Proteinbiosynthese, Transkription oder Translation''' noch in Erinnerung. Bevor wir diese molekularen Mechanismen wieder auffrischen zunächst noch eine Wiederholung der anderen Art: Im oberen Bild ist wie selbstverständlich abgebildet, dass die '''DNS''' verantwortlich für ein Merkmal (Farbe der Samen) verantwortlich ist. Woher weiß man das? Am Anfang der Thematik "Genetik" haben wir einen Versuch analysiert, der zeigen konnte, dass der '''Zellkern''' die Informationen über die Merkmale einer Zelle enthält.
+
* Betrachte den folgenden DNA-Strang. Zunächst nur den mit schwarz dargestellten Normalfall: <br>
* Sucht diesen Versuch in eurem Skript (es war ein Arbeitsblatt)!
+
[[Datei:GenMut_Raster_AA.jpg|800px]]
* Lest euch die entsprechende Einheit gut durch!
+
* Leite den entsprechenden mRNA-Strang ab und übersetze diesen in eine AS-Kette (Code-Sonne auf S. 68 im Buch)
* Legt dann das Skript beiseite!
+
* Skizziert den Versuch nun (mit Worten, nicht mit "Skizzen")! Am besten macht ihr das tatsächlich schriftlich. Ihr könnt es auch jemandem (von mir aus auch einem Gegenstand in eurem Zimmer) erzählen. Aber bitte bildet ganze, sinnvolle Sätze! Zum Skizzieren eines Versuchs gehört: Der Versuchsaufbau, das Ergebnis, die Interpretation des Ergebnisses soweit möglich.
+
</div>
+
<br>
+
 
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
 
{{versteckt|
 
{{versteckt|
[[Datei:PBS_Einleitung_Acetabularia.jpg|800px]]<br>
+
[[Datei:GenMut_Raster_ML_T1.jpg|800px]] <br>
<br>
+
Typische Fehler:
* '''Versuchsaufbau:''' Man verwendet verschiedene Arten von ''Acetabularia''. Das sind '''einzellige''' Grünalgen, die sich vor allem in der Form ihres '''Hutes''' unterscheiden. Eine typische Eigenschaft dieser Algen ist das Nachwachsen des Hutes, wenn man ihn abschneidet. die Hüte zweier verschiedener ''Acetabularia''-Arten wurden entfernt und die Zellkerne, die im Rhizoid sitzen vertauscht.
+
* falschen Strang abgelesen
* '''Ergebnis:''' Es wächst (nach einigen Zwischenformen) die Hut-Form, die zum transplantierten Zellkern passt.
+
* Translation nicht bei AUG begonnen
* '''Schlussfolgerung:''' Der Zellkern enthält die Informationen über die Merkmale der Zelle.
+
 
}}
 
}}
</div>
 
 
<br>
 
<br>
 
+
* Füge nun - wie in rot dargestellt - an der gekennzeichneten Position das Nukleotid mit der Base Adenin ein und führe erneute eine Transkription und Translation durch!
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
Damit könnte man sich eigentlich zufrieden geben. Fachlich hätte man dann aber etwas übersehen. Warum belegen die Versuch mit ''Acetabularia'' NICHT, dass die DNS die Informationen über die Merkmale einer Zelle enthalten?
+
</div>
+
<br>
+
 
+
<div style="border: 1px solid #FF0000; padding:7px;">
+
 
{{versteckt|
 
{{versteckt|
Bei ''Atecabularia'' wird der Zellkern ausgetauscht. Im Zellkern befindet sich nicht nur DNS. Die Informationen über die Merkmale könnten daher auch an ein anderes Medium gekoppelt sein, dass im Zellkern vorkommt, z.B. Proteine oder RNA.  
+
[[Datei:GenMut_Raster_ML_T2.jpg|800px]] <br>
 
}}
 
}}
</div>
+
* Beschreibe (am besten schriftlich, damit Du das Formulieren übst) welche Konsequenzen diese Mutation für das Lebewesen hat!
<br>
+
 
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
+
Einen tatsächlichen Beleg dafür, dass die DNS der Träger der Erbinformation sein muss lieferten die Versuche von Oswald Avery 1944. Dessen Versuche waren eine Weiterentwicklung von Versuchen, die Frederik Griffith 1928 durchführte. Betrachten wir zunächst diese.
+
* Beschreibt mit Worten (wie oben: Am besten schriftlich oder jemandem laut in ganzen Sätzen erklären) die folgenden Abbildungen Schritt für Schritt und versucht so weit es geht die dargestellten Ergebnisse auch zu interpretieren (also eine Begründung dafür zu finden)!
+
[[Datei:PBS_Griffith_1.jpg|800px]]
+
<br>
+
 
{{versteckt|
 
{{versteckt|
Mäuse werden mit verschiedenen Streptokokken infiziert. Man unterscheidet Streptokokken vom r-Stamm und vom s-Stamm. Diese unterscheiden sich in ihrem Aussehen unter dem Mikroskop (daher der Name), molekularbiologisch besitzen die Bakterien des s-Stamms eine Schleimhülle um ihre Zellen.<br>
+
Das entstehende Protein besteht aus völlig anderen Aminosäuren. Die 3dimensionale Raumstruktur wird sich völlig ändern. Da ein wichtiger Zusammenhang zwischen dieser Struktur und der Funktion einen Proteins besteht, ist das Produkt dieser Proteinbiosynthese höchstwahrscheinlich komplett funktionslos. Handelt es sich z.B. um ein Enzym, sind schwerwiegende Stoffwechselstörungen im Organismus zu erwarten.
Eine Infektion mit r-Stamm-Pneumokokken ist für die Mäuse unproblematisch, bei der Infektion mit s-Stamm-Pneumokokken sterben sie
+
 
}}
 
}}
 +
</div>
 
<br>
 
<br>
[[Datei:PBS_Griffith_2.jpg|800px]]<br>
 
{{versteckt|
 
Erhitzt man die s-Stamm-Pneumokokken, verlieren Sie ihre tödlich Wirkung. Das ist verständlich, da durch das starke Erhitzen die Bakterien abgetötet werden und nicht mehr lebensfähig bzw. vermehrungsfähig sind.
 
}}
 
<br>
 
[[Datei:PBS_Griffith_3.jpg|800px]]<br>
 
{{versteckt|
 
Bringt man abgetötete s-Stamm-Pneumokokken mit lebenden r-Stamm-Pneumokokken in Kontakt, so führt die Infektion einer Maus mit dieser Kombination zu ihrem Tod.
 
}}
 
<br>
 
Griffith deutete die Ergebnisse seines Versuchs nicht ganz korrekt. Wie würdet ihr dieses Versuchsergebnis erklären?
 
{{versteckt|
 
R-Stamm-Pneumokokken sind nicht tödlich, weil das Immunsystem der Maus über die Oberfläche der Pneumokokken-Zellen eine leichte Angriffsmöglichkeit hat (s. Blutgruppen, Antikörper, Verklumpung). s-Stamm-Pneumokokken "verstecken" ihre Oberfläche in der Schleimschicht und sind so für das Immunsystem der Maus quasi nicht "sichtbar".<br>
 
Prinzipiell sind nun zwei Szenarien denkbar: Die abgestorbenen s-Stamm-Pneumokokken werden durch die r-Stamm-Pneumokokken wieder zum Leben erweckt... Das ist jedoch nicht möglich, Pneumokokken-Zombies gibt es nicht. Die zweite Möglichkeit: Der Informationsträger, der bei den s-Stamm-Pneumokokken dafür verantwortlich ist, dass sich eine Schleimhülle bildet ist noch da! - Die s-Stamm-Pneumokokken haben sich ja nicht in Luft aufgelöst, sie sind nur tot. Irgendwie muss der Träger der Information "Mach-Schleim" noch vorhanden sein und in die Erbinformation der r-Stamm-Pneumokokken übergegangen sein.<br>
 
Tatsächlich ist genau das passiert: Die Pneumokokken können DNS aus dem sie umgebenden Medium aufnehmen und in ihre eigene DNS einbauen. Der Vorgang nennt sich Transformation.
 
}}
 
  
Avery verfeinerte den Versuch nun so, dass das eingangs beschriebene Dilemma (was genau im Zellkern ist denn jetzt Träger der Erbinformation: DNS, Proteine, RNS?) umgangen werden konnte. Beschreibt die Versuchsreihe und das Ergebnis!<br>
+
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
[[Datei:PBS_Avery.jpg|800px]]<br>
+
<span style="color:#060">'''Neu: Gentechnische Werkzeuge und Verfahren - Überblick'''</span><br>
{{versteckt|
+
'''Ziel''': Der Mensch ist inzwischen in der Lage, das Erbgut von Lebewesen gezielt zu verändern. Damit kann man z.B.
* '''Versuchaufbau''': Avery stellte einen zellfreien Extrakt von s-Stamm-Pneumokokken her. Dieser löst zwar keine Erkrankung mehr aus, enthält aber noch alle Bestandteile. Diesen zellfreien Extrakt mischte er mit lebenden r-Stamm-Pneumokokken, wobei er jedoch in verschiedenen Ansätzen verschiedene Bestandteil (auf chemischem Wege) zerstörte: Einmal die DNS, einmal die Proteine und einmal die RNS.<br>
+
* die Eigenschaften von Pflanzen verändern,
* '''Ergebnis''': Die Mäuse überleben eine Infektion mit dem Gemisch aus r-Stamm-Pneumokokken und s-Stamm-Bestandteilen, wenn die DNS zerstört wurde.
+
* Bakterien und Hefen dazu veranlassen, Stoffe in großen Mengen herzustellen, die der Mensch dann isolieren und weiterverwenden kann,
* '''Schlussfolgerung''': Die DNS muss die Information über den Bau der Schleimkapsel enthalten haben und hat sich damit als Träger der Erbinformation erwiesen.
+
* genetische "Defekte" zu "reparieren".
}}
+
 
<br>
 
<br>
 +
Es gibt einen inzwischen etwas in die Jahre gekommenen "Selbstlernkurs", den ich die Schülerinnen und Schüler meiner Bio-Oberstufenkurse als Einleitung zur Thematik im Computerraum immer alleine bearbeiten habe lassen. Das klappte eigentlich immer ganz gut. Der Kurs wurde von einem Herrn Mallig in Freiburg entwickelt.
 +
* Für diesen Selbstlernkurs solltet ihr euch ca. 30-45 Minuten Zeit nehmen.
 +
* Evtl. ist es für den/die eine/n oder andere/n für euch besser '''vor dem Selbstlernkurs''' die '''Seiten im Buch''' zu lesen und einen '''kurzen Film''' zu schauen. Springt dazu zunächst zum nächsten Kasten "Weiteres Material".
 +
* Der folgende Link führt euch zur Startseite [http://www.mallig.eduvinet.de/bio/gentecnk/gentek10.htm Selbstlernkurs-Start]
 +
: Dort wird noch mal erklärt, was ein Selbstlernkurs ist und man steigt in die Thematik "Gentechnik" ein.
 +
: Ihr kommt immer zur nächsten Seite mit einem recht unscheinbaren '''Link unten rechts''' auf jeder Seite "zur nächsten Seite".
 +
: Zurück kommt ihr am besten mit den "Back"-Buttons eures Browsers
 +
* Solltet ihr euch im Netz des Selbstlernkurses verlieren, könnt ihr auch immer wieder auf der folgenden Seite einsteigen: [http://www.mallig.eduvinet.de/bio/gentecnk/gentek12.htm Selbstlernkurs-Übersicht]
 +
: Denn hier sind genau die Begriffe aufgeführt, die ihr beherrschen sollt!
 +
: Ihr sollt erklären können:
 +
:: Was "können" '''Restriktionsenzyme'''?
 +
:: Was "können" '''Ligasen'''?
 +
:: Was sind '''Vektoren'''?
 +
:: Was bedeutet '''Klonierung'''?
 +
:: Wie funktioniert die '''PCR (Polymerase-Chain-Reaction)'''?
 +
:: Was ist '''cDNA'''?
 
</div>
 
</div>
 
<br>
 
<br>
  
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
 
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFC; align:left;">
<span style="color:#060">'''Optional (= freiwillig)'''</span><br>
+
<span style="color:#060">'''Weiteres Material'''</span><br>
Ich habe kein wahnsinnig schönes Video gefunden, das mich persönlich anspricht, aber wer lieber jemandem "Zuhören" will und nicht bloß immer "Lesen", der kann sich das folgende Video zu den Versuchen von Griffith und Avery anschauen:<br>
+
'''Film''' auf BRalpha, ca. 15min.: Gesamtüberblick "Was kann Gen-Technik"
{{#ev:youtube |j6mm0X-dm48}} <br>
+
{{#ev:youtube |jc_iY5fnGLg}}<br>
</div>
+
 
<br>
+
* Buch, S. 112-113 (Restriktionsenzyme, Ligasen, Marker)
 +
* Buch, S. 114-115 (Vektoren)
 +
* Buch, S. 118-119 (PCR)
  
<div style="margin:0;  margin-right:8px; border:0px solid #dfdfdf; padding: 0em 1em 1em 1em; background-color:#DFF; align:left;">
 
O.k., Zeit sich die DNS etwas genauer anzuschauen. Schaut das folgende Video:
 
{{#ev:youtube |wUeoM3E4uxQ}} <br>
 
<br>
 
Beantwortet nun folgende Fragen:
 
* Erwin Chargaff experimentierte zu Zeiten von Griffith und Avery ebenfalls mit DNS. Hauptsächlich zerlegte er die DNS von verschiedenen Lebewesen in ihre Bestandteile und bestimmte die enthaltene Menge. In eurem Buch auf der S. 61 oben rechts ist eine Abbildung, die im Prinzip einen Teil seiner Ergebnisse zeigte. Interpretiert diese Abbildung!
 
{{versteckt|
 
* Die Grafik zeigt das Verhältnis der vier in der DNS vorkommenden Basen bei verschiedenen Lebewesen.
 
* Bei unterschiedlichen Lebewesen ist das Verhältnis der Basen unterschiedlich
 
* Stets gilt jedoch: Die Basen A und T kommen immer im gleichen Verhältnis vor ebenso wie die Basen G und C
 
* Die Begründung für diesen Effekt ist die '''Komplementarität''' der beiden DNS-Einzelstränge: Die Basen Adenin und Thymin können über Wasserstoffbrücken eine stabile Bindung eingehen, die Basen Guanin und Cytosin ebenso. Für jede Adenin-Base auf dem einen Strang muss auf dem anderen eine Thymin-Base enthalten sein. Daher ist die Anzahl dieser beiden Teilchen immer gleich. Diese Begründung gilt auch für die Basen Guanin und Cytosin.
 
}}
 
* Ein DNS-Einzelstrang soll folgende Sequenz enthalten: 3´-GATTACA-5´. Wie lautet die entsprechend komplementäre Sequenz des gegenüberliegenden Stranges?<br>
 
[[Datei:PBS_BauDNA_GATTACA.jpg|800px]]<br>
 
{{versteckt|
 
Der komplentäre Einzelstrang muss die Sequenz 5´-CTAATGT-3´ aufweisen. <br>
 
[[Datei:PBS_BauDNA_GATTACA_komplementär.jpg|800px]]<br>
 
}}
 
<br>
 
 
</div>
 
</div>
<br>
 

Aktuelle Version vom 19. Juni 2020, 19:37 Uhr

Seite noch im Aufbau!

Aufgabe
Zunächst eine Aufgabe, die mit dem letzten Thema "Mutationen" zusammenhängt:

  • Ein Mutationstyp wurde im Unterricht nicht besprochen: Die so genannte Rastermutation.
  • Bei einer Rastermutation wir eine Base (bzw. mehrere) zusätzlich in die DNA eingefügt (= Insertion) oder eine Base (bzw. mehrere) entfernt (= Deletion).
  • Dadurch wird ab diesem Punkt das gesamte Leseraster der DNA verschoben. Es kommt zur Bildung völlig anderer AS-Ketten, die so gut wie nie die Funktion des ursprünglichen Proteins erfüllen können.
  • s. auch Buch: S. 76 letzter Absatz - S. 77 erster Absatz
  • ein Beispiel für einen chemischen Stoff, der in der Lage ist, eine Rastermutation zu verursachen, wäre z.B. Ethidiumbromid


Eine Beispielaufgabe:

  • Betrachte den folgenden DNA-Strang. Zunächst nur den mit schwarz dargestellten Normalfall:

GenMut Raster AA.jpg

  • Leite den entsprechenden mRNA-Strang ab und übersetze diesen in eine AS-Kette (Code-Sonne auf S. 68 im Buch)

GenMut Raster ML T1.jpg
Typische Fehler:

  • falschen Strang abgelesen
  • Translation nicht bei AUG begonnen


  • Füge nun - wie in rot dargestellt - an der gekennzeichneten Position das Nukleotid mit der Base Adenin ein und führe erneute eine Transkription und Translation durch!

GenMut Raster ML T2.jpg

  • Beschreibe (am besten schriftlich, damit Du das Formulieren übst) welche Konsequenzen diese Mutation für das Lebewesen hat!

Das entstehende Protein besteht aus völlig anderen Aminosäuren. Die 3dimensionale Raumstruktur wird sich völlig ändern. Da ein wichtiger Zusammenhang zwischen dieser Struktur und der Funktion einen Proteins besteht, ist das Produkt dieser Proteinbiosynthese höchstwahrscheinlich komplett funktionslos. Handelt es sich z.B. um ein Enzym, sind schwerwiegende Stoffwechselstörungen im Organismus zu erwarten.


Neu: Gentechnische Werkzeuge und Verfahren - Überblick
Ziel: Der Mensch ist inzwischen in der Lage, das Erbgut von Lebewesen gezielt zu verändern. Damit kann man z.B.

  • die Eigenschaften von Pflanzen verändern,
  • Bakterien und Hefen dazu veranlassen, Stoffe in großen Mengen herzustellen, die der Mensch dann isolieren und weiterverwenden kann,
  • genetische "Defekte" zu "reparieren".


Es gibt einen inzwischen etwas in die Jahre gekommenen "Selbstlernkurs", den ich die Schülerinnen und Schüler meiner Bio-Oberstufenkurse als Einleitung zur Thematik im Computerraum immer alleine bearbeiten habe lassen. Das klappte eigentlich immer ganz gut. Der Kurs wurde von einem Herrn Mallig in Freiburg entwickelt.

  • Für diesen Selbstlernkurs solltet ihr euch ca. 30-45 Minuten Zeit nehmen.
  • Evtl. ist es für den/die eine/n oder andere/n für euch besser vor dem Selbstlernkurs die Seiten im Buch zu lesen und einen kurzen Film zu schauen. Springt dazu zunächst zum nächsten Kasten "Weiteres Material".
  • Der folgende Link führt euch zur Startseite Selbstlernkurs-Start
Dort wird noch mal erklärt, was ein Selbstlernkurs ist und man steigt in die Thematik "Gentechnik" ein.
Ihr kommt immer zur nächsten Seite mit einem recht unscheinbaren Link unten rechts auf jeder Seite "zur nächsten Seite".
Zurück kommt ihr am besten mit den "Back"-Buttons eures Browsers
  • Solltet ihr euch im Netz des Selbstlernkurses verlieren, könnt ihr auch immer wieder auf der folgenden Seite einsteigen: Selbstlernkurs-Übersicht
Denn hier sind genau die Begriffe aufgeführt, die ihr beherrschen sollt!
Ihr sollt erklären können:
Was "können" Restriktionsenzyme?
Was "können" Ligasen?
Was sind Vektoren?
Was bedeutet Klonierung?
Wie funktioniert die PCR (Polymerase-Chain-Reaction)?
Was ist cDNA?


Weiteres Material
Film auf BRalpha, ca. 15min.: Gesamtüberblick "Was kann Gen-Technik"


  • Buch, S. 112-113 (Restriktionsenzyme, Ligasen, Marker)
  • Buch, S. 114-115 (Vektoren)
  • Buch, S. 118-119 (PCR)