Abi 2013 Analysis II Teil B: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)

Aktuelle Version vom 15. April 2018, 19:20 Uhr


Mathematik (Bayern): Abiturprüfung 2013
Analysis II - Teil B


Download der Originalaufgaben - Lösung zum Ausdrucken


1

Gegeben ist die Funktion  f:x \mapsto \frac{1}{2}x-\frac{1}{2}+\frac{8}{x+1} mit Definitionsbereich IR\{1}. Abbildung 2 zeigt den Graphen Gf von f.

ABI2013 AII TeilB 1.png


a) Geben Sie die Gleichungen der Asymptoten von Gf an und zeigen Sie rechnerisch, dass Gf seine schräge Asymptote nicht schneidet. Zeichnen Sie die Asymptoten in Abbildung 2 ein.

ABI2013 AII TeilB 1a Lös.pdf

b) Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von Gf .

ABI2013 AII TeilB 1b Lös.pdf



2

Abbildung 2 legt die Vermutung nahe, dass Gf bezüglich des Schnittpunkts P(-1/-1) seiner Asymptoten symmetrisch ist. Zum Nachweis dieser Symmetrie von Gf kann die Funktion g betrachtet werden, deren Graph aus Gf durch Verschiebung um 1 in positive x-Richtung und um 1 in positive y-Richtung hervorgeht.

a) Bestimmen Sie einen Funktionsterm von g. Weisen Sie anschließend die Punktsymmetrie von Gf nach, indem Sie zeigen, dass der Graph von g punktsymmetrisch bezüglich des Koordinatenursprungs ist.

(Teilergebnis:  g(x) = \frac{1}{2}x+\frac{8}{x} )
ABI2013 AII TeilB 2a Lös.pdf

b) Zeigen Sie, dass  \int_{0}^{4} f (x)\,dx = 2+8 \cdot ln5 gilt.
Bestimmen Sie nun ohne weitere Integration den Wert des Integrals  \int_{-6}^{-2} f (x)\,dx ;
Veranschaulichen Sie ihr Vorgehen durch geeignete Eintragungen in Abbildung 2.

ABI2013 AII TeilB 2b Lös.pdf




3

Eine vertikal stehende Getränkedose hat die Form eines geraden Zylinders. Die Lage des gemeinsamen Schwerpunkts S von Dose und enthaltener Flüssigkeit hängt von der Füllhöhe der Flüssigkeit über dem Dosenboden ab. Ist die Dose vollständig gefüllt, so beträgt die Füllhöhe 15 cm. Die bisher betrachtete Funktion f gibt für 0 ≤ x ≤ 15 die Höhe von S über dem Dosenboden in Zentimetern an; dabei ist x die Füllhöhe in Zentimetern (vgl. Abbildung 3).

ABI2013 AII TeilB 3.png

a) Berechnen Sie f (0) und f (15). Interpretieren Sie die beiden Ergebnisse im Sachzusammenhang.

ABI2013 AII TeilB 3a Lös.jpg

b) Die zunächst leere Dose wird langsam mit Flüssigkeit gefüllt, bis die maximale Füllhöhe von 15 cm erreicht ist. Beschreiben Sie mithilfe von Abbildung 2 die Bewegung des Schwerpunkts S während des Füllvorgangs. Welche Bedeutung im Sachzusammenhang hat die Tatsache, dass x-Koordinate und y-Koordinate des Tiefpunkts von Gf übereinstimmen?

ABI2013 AII TeilB 3b Lös.jpg

c) Für welche Füllhöhen x liegt der Schwerpunkt S höchstens 5 cm hoch? Beantworten Sie diese Frage zunächst näherungsweise mithilfe von Abbildung 2 und anschließend durch Rechnung.

ABI2013 AII TeilB 3c Lös.jpg