Hexaeder: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „{| border="0" cellpadding="5" cellspacing="2" style="border-left: 30px solid {{{RandLinks|#FAFAFA}}}; border-top: 30px solid {{{RandOben|#FAFAFA}}}; border-bottom…“)
 
 
(3 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
{| border="0" cellpadding="5" cellspacing="2" style="border-left: 30px solid {{{RandLinks|#FAFAFA}}}; border-top: 30px solid {{{RandOben|#FAFAFA}}}; border-bottom: 0px solid {{{RandUnten|#FAFAFA}}}; border-right: 30px solid {{{RandRechts|#FAFAFA}}}; margin-bottom: 0.4em; margin-left: auto; margin-right: auto; width: {{{Breite|100%}}}; background-color: {{{Hintergrund|#FAFAFA}}}"
+
<div style="background: #FFFFFF;">
 +
{| border="0" cellpadding="5" cellspacing="2" style="border-left: 30px solid {{{RandLinks|#FFFFFF}}}; border-top: 30px solid {{{RandOben|#FFFFFF}}}; border-bottom: 0px solid {{{RandUnten|#FFFFFF}}}; border-right: 30px solid {{{RandRechts|#FFFFFF}}}; margin-bottom: 0.4em; margin-left: auto; margin-right: auto; width: {{{Breite|100%}}}; background-color: {{{Hintergrund|#FFFFFF}}}"
 
|-
 
|-
|
+
|<center>
{| class="wikitable" style="text-align:center"
+
{| class="" style="text-align:center" style="background:#FFFFFF"
 
   | rowspan="2" | <imagemap>
 
   | rowspan="2" | <imagemap>
 
                   Datei:Platonische Körper Briefpapier Button.png|224px|center|
 
                   Datei:Platonische Körper Briefpapier Button.png|224px|center|
Zeile 10: Zeile 11:
 
                   </imagemap>  
 
                   </imagemap>  
 
   |  
 
   |  
   {|
+
   {| style="background:#FFFFFF"
 
   | <imagemap>
 
   | <imagemap>
 
     Datei:Gemeinsamkeiten Briefpapier Button.png|217px|center|
 
     Datei:Gemeinsamkeiten Briefpapier Button.png|217px|center|
Zeile 44: Zeile 45:
 
   |-
 
   |-
 
   |  
 
   |  
  {|
+
  {| style="background:#FFFFFF"
 
   | <imagemap>
 
   | <imagemap>
 
     Datei:Ikosaeder Briefpapier Button.png|217px|center|
 
     Datei:Ikosaeder Briefpapier Button.png|217px|center|
Zeile 77: Zeile 78:
 
   |}
 
   |}
 
  |}  
 
  |}  
|}<noinclude>
+
|}</center><noinclude>
  
  
Zeile 83: Zeile 84:
 
|-
 
|-
 
|
 
|
<br><br>[[Datei:Hexahedron-white.gif|rechts|Hexaeder]]
+
<br>
<center><u><font size="6">Hexaeder</font></u></center>
+
[[Datei:Hexahedron-white.gif|rechts|120px|Hexaeder]][[Datei:Hexahedron-white.gif|links|Hexaeder]]
<br><br><br>
+
 
<font size="4">Eigenschaften des Hexaeders/Sechsflächners:<br>
+
<center>[[Datei:Hexaeder+ E-Schema mit Hintergrundfarbe W-Seminar Wiki.png|500px]]</center>
6 Flächen<br>
+
<br>
4 Ecken<br>
+
<center>
12 Kanten<br>
+
<ggb_applet width="1109" height="613"  version="3.2" ggbBase64="UEsDBBQACAgIANFBISwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1bb9tIln7e+RWEHhrpRsvhndJ01AM7jmMnji+x4yyCBgJKKkm0KEohKdvxYIB9nP0V+zLA7uvuAP3UT5333f/Qv2TrwqJ4E8WSaJnFxEhEiqRI1vlOnfrOqct59pe7iS3cANezpk6nIe2IDQE4vWnfcoadxtwfNFuNv/z8p2dDMB2CrmsKg6k7Mf1OQ9mRG+j43Pr5T//yzBtNbwXTxpdcWeC20xiYtgcagjdzgdn3RgD4sePm/M6yLdP9fNq9Bj3fW5wgNzlyZnP4FN+dw2O9Sf/Y8ujXp/iBM9vy960bqw9cwZ72Og1dg68O966A61s90+40VJEckTsNOXESHlLQ2dHUte6njo8uX9zcNrvAhgK48D/bQBBu0FmFnBrAiwXBs+4BFJaMjj17imXwDMx7ttW3TAeVE78ivEgQbq2+P4LXSmIbPg5YwxEshy5J5Ha96dTtX3z2fDAR7j4Ad9ppaJqKQPhMvimajr558J3hEzURn4p+w7cBNxfA9+Ebe4J5BxbCHLpWP/blyNub2otDs6nl+M/NmT93Md5KcAgXvNOAz3LRC+86QxsEx2QIxwj0xt3p3QWRgkJuffl5hn+CX6g7fD61p67gItFr8IJg2yVbfA160/AqEV8j4iuCe6CbhueltoyvwNsu2RKsLIe8WlByiZZaEuljLE9AB5AYoZqGhccodxoNYe5Y/jH9AtVjHBRVIj84mU+6sH5EFSS8p1TWPZ89TejPszFwHWATJXEgtvPp3COqSJ6FX6QPetYEfiUnApGYCK538AXI0T4YuoC+OKldRGD4rBhVxMThZ0/pS6B38OC79nxoJmB5fFQWVIt9WIPQXt/00RFUD2wwAbCS+FgfsDqFctlthMZiius9reHB+UjJ4PlM5cBqZNqzkQmPUP23zc/QDOAXlyJV+M20Hy+l6UBp4SLAGjdDN0B4zADoB6bPD5RYmMFb4ioReSUsI0+4Q7UZ18NOw0Dbe/JjfA2pPqjmL6wGxJbIZIV0nq+QzkL/Ki0cWX0I4ezXTDhNjVU6velkYjp9wTEn8EkXYIiOY6lYqLEUTBGpkGBKSFhEEnOfnuiRuwX3SMnaC+5GpdlrxG2rP4ImzAGehxsAP2rqN6rN4vqIRGqjHMhUDETalFut8HZFygA+OeQaj1hpawLpRc/yQzHaCNIjx4c2G2AbmDbFYwBmqA08dS5d0/EQTyLXREx8IU1/UQ9N1wNQWmVagZf1kI0kPoRwjmoiHPUhhPO6JsJplyMcZz4BrtULiz/B4oG/nAe/D+8bE1mc5q6WWdS+SwUlFhz1bOzbTSwnMOwTE7WfaM/selN77oOLHiS2zvG0hyVLAaUel4h/hdsHlRojuaWgvYF1BxZe0BInsEjDsQmsRTX3zcOTZnEbqtt8GNZ8UjvxsFPDPPmc1kQ+G4inCHN+Q5jzSYo5z9iY86wSzDkXkRzmLClytYlzEShPCJSnKSg/sUH5iScoKaOUZQqlJPIP5e4yKLtsUHYrAeXa/mwtqmVgYXdTWJpsWJo8YZmqlk0Jx/crjGUemdhbj0xIYhC9F4PoPdo+tivVNAJspDLp1kGdJNRaV0Jxe3A2tT8Pp07CHuwRe3AAN3KnEVaKiGG4suAde2OJXNj9KJFLB3CjdBp9uFE7DdRnqHUah3Cjdxqv8m3JLHgTikb4hPVMStwdXgatpmBoNWltl1jM18BUa/fxsQq0sZ1splSNByOZBGDAm/ilBOPgKnyelH6fP+nruqYoqqbobcUwFLX1oinpCcsrG7qh6arRUqRWW4EXaPwiBHhDqJmsIIg8xP4kftCIE5bD9QiLrmIho02XbNZmK3QoUPz9M4mItqNpkiRpkqxIsgbrAqwHRnnk7RUPsjAWTSX08WVZEWVVlzVJ0zViNh6IqL1aSdRkStRkcuk1IWpDQtRGhKgdE6J2thZRk+tG1B6rQKUxBY7tYBKNa96wWGINI7RB3Wm3dVFUdElsSYosqthCcIvQkDeE0rxBg4jE/vhFY8QdGvKODOuAqotqW9ZERVJCnh36nWICn1ZqnGl1AYqTmWMeyIy+IDPZPlBZ1O6MJ2kklbDdKp/VnRGydryS1SnkwhkNv9mE1VmE1Y0JqzsnrO7tWqxOKcWQZI9G2T6pm/EXfUu2UjVqpGz+sCgQDJJ0DZ6RDK2l6aqkqnyHgyzeMMqidRwHTMccyj879JHH5NocuaZx7nLOA3fRKJNTdhRF1PW2aCgtQ1P1tl4uk3vLkzRSSsgYrWRgcm9XMjmVMrkgPucSJucQJucRJndBmNzlWkxOrVd8bsZjfG6pZaSGscmzZUxC5PIGUM24g8Od/AsEgSSOg0BJgDzeAJISPQpoJFSkuug7ybPcQBPnMRc88ZhkjWCNSOUJ4pIHQYQziB5iKNx50VicRi78FMbi8A7kcD7hcCb+DlncO8LirtZicVq9WNwn/gJyS8Ph0VaqWbc4kM0fUFmR+noGUn3eoFF3VFVstWWx3dJEUZf1jDhqgkoY/MJj8ld3OPeE4iTmHU8kJj3KehP+dsVD0bVI0eN/6oPxuauVfE6nfC6IyN0QNtfDNA7yuT7lc+8Jn/uwFp/T68bnOIzKJTtYOTJ0Sfnf8Cb95RGfZUxAavELT68OTICrOZKpCSgcIlAgKgp3VFWRW+22IouSbIiKxpe/Gact73mgLepS2lLitIcPXEkia9TzRrMesqervyLU7DBF3cBHKZ+FpWY7rW0OHmXKetHYE18T0opAfkhnJCchH7BCPuAO8kT7W/EJoEXQPCBo7qXQHLKiOeQLTTqXOlJXuQcznIOWBHPECuaILzC5nm/F0M4ep5C1WJG1+EK2hrO3iuB9TPB+l8L7mhXva77wrlNXURGgr5YBPWYFeswX0M3lPU9R/sxT3xMD3ucpvCeseE84w5u3fqwiaAZdGB9SaDqsaDp8oVkkWMxbGKwI4B8I4O9TgLusgLt8AZ6svRUPPRfB8j3tf0xi6bFi6fGFZcEwNk+dPQzGOu1D+ax4+5zhXdNxcgyO1FkKdPOjzAa6uXaHemX4Vs18p3BKVxLbHiu2Pb6wrd/0pSJwv13mOvVZ4e7zBjdX42KKYHmxrOoCVizBNyyrgeVlCssBK5YDvrCs3yS5InBfLmNUQ1a4h3zBXacpdwy9iWmgR6xAj/gCenVwK8Wuql2t84Y17QW+LP/5ZunYJ6XMYfvPaycekVU8hWzFxyD/wPOPUspeWKz2wuLLXihJT1uqeCKaPIXfr43CGw+p8M+pwu9nKPw1q8Jf86XwYsLSVjyHVp66v6idujM3f0XUfZ+q+4sMdR+zqvuYL3VvJg28XIOxgi8oonsZiNqsiNp8IRom0qGVpc0ToM8tt2eDZQ3SHl32IquququA7U2dSMJjNw9WZR1Y4f37FrF28PLT4Op3k/F8CGzhj3//D4EtX3JaBbQ8FShUEGANgXMDX2zqeoJwJ9KonUgtAD1yJ2FXEJ2TqHMoRSwvtOuudSfs0ut36VW7MsqyjPeU4Ka7Kpm1Afc0HD/SsnUNtgw9awAxylWRN1aftHNxJQnqdUwldlf1fsYbzN2sBrPQjKzyZsLEhoeW0egtEdc4Q1wHbOI6qJS4Fsn8tAcQ13WGuF6yietlpcRFtWtDDyLTXu9Se31A7fXLDHvtsdlrr/RmONteHzlxey388ff/El6bsMFzyjPkch5IxdrprRhyRdyRtRIteRzg7nRqA3OxWsFpF7gD+8s/eiPgWM7ItEkthLKZgxTJWA7xpuBEa9DpYOABH1cYMbAvWg54xct6EJSzgiWUxVJLeGs5Y2BXsJySkcOnipfzRW9cTRjLUVRi+qpYPlkvo3wBP69gARWjlAIGDVoVC1gOgpHGuYqF1JQyCnk1teeTStZDpXBzcTdzIZdBhCt4sUtw50OGCE90Gt99mk/9n14gWuP1RuYAQir0gSccgjsT9IHrkQvwTeOi8uFdGvFbPmYoZjCFb+YB1xqE9N6DdBoS9walR8HvPd90/TPEt4VgzIVqxLpetSDnpRJbbJU5fWO0AwvT8X26amhWHCVYM8poBLkcFfKbHt5BabfxDkq8/VFZ5f9krkZlLOfxYnk8Pk0m45Se0pP40aCa5ZB8HBAfBtuEpmgsmsKSJTInQdJaIitaoK31GyZLUbEFfXr8IcDWkVVx+ff5kz9rz0rFEQD8IcDYE/LoABQKRD7P6608ZItIHpbRQVwKVDQaWSh4S49icIq0p/FSH60dh123X3zBmZuyEaxhlSeXsrrNw6zpTeZF6/ME+KoKAszxHB9CgKUOvHtdBQHmeKUPIUCVWYCZ3qIc8xb3YVkzeD5wh1YX+mBWbySYcw+6ka5wMZ9MABSXDfehuR55wvnc7LumD4r7lXJxa8nsk2zfHVVz3FEs4yPamqwCRYmDYgrXAHnugYAFAFtbJ/S3gnLfwFuYv/+P0AWe5d/7P0YxG1nApbjFRWaO4E/nqMnFJw9gewrsPxdHUPm6EHxVFEE1hqAq/ICx6Qgqhuj+dkcYfPnNFUx4SBI63w39n4RTdLq45NWvS/Kvi0peSxm0eL9JhjGbwJo19S0kbHRAEvpzF57sW0DYde5hFcF1A3dL4LoX3jIeT2OoNtqm4CXKVGHgChs9PWn0kNCpcDEwtIFxkJHzwcj/Ee747pd/DP1ssNQfhdsptnwYbXSiOEb614NRYbNmxDBKFJA0I4OpPQTOojGh9a039Z78739/jw3eUxZDZ3w9OBQ2cq14XYnrfhiIRdbpElYQYp5ihq8LLG9mAdu7hTvQI++NEH3A1tDz4E9PTBS0nUPnOaxhuvBkBGvj98WRa5WFXDykTOp2xnCSKkObZQZzPJrj1R7N6oJWYqh51GfW5dKHRr2i4ZvjjPCNzzYiyn/YNBgl6WCFRjMZ8k5L0/TEeCYyVlUjkfLMyF+xcanZY9FfU8CPMgCfsI5Fn3ABeWwaebIfSOdpOHp44wSqPs7XI4UIxlB9QyE/YQvHvtn+ANFoXKgdzO4XC0K7gaHMk8LJ40ohWJOVVQbKjtKKzpBnTXefSZvaK10MPcvJiBKnhJ8REA9ElDAtKU6O2t/IEbv/IcUHtxxNhLfmfPJngf45T6hUkKOhC5ETRArY/5Ajh7G80NEWg2soMXTz1B68wk6LLKa8FoRe3zKHU8eETZLlkdimcOG7AIoCeu/ARmGW+1vLw9K6h+6KMASQ23z5rQtc2wKBr0kkh777OwzxZ3FTHOMFqDBKhcMwsrQKpcnCZI5Nx4lEy6jvT11/CBHojRzYFNwCtw8chgiZvHEV4waaLOuXO3QxVrIKDmCUC4+zzdbAeJ+UC42zKfwgCL94n1z/r4Ii/E345ScSRIdbHEeHWxN9dNCHhD7gP/yfxNbDr254VeRuDFq5cY/VlrXS8o7NS/CvcXpegrVPYa8E1DWlykwLJGSNwXBYfTpnSxNRi0L5sKOhwo70/PGAqXmrWx8NlV3Xk12dXjhiNNG2vJnbvgXfcUyCUii2Ge8B9RJ9MxPLJ/z+y6/wW7IpYmEJG3dyrh4E++iNUHF+oK7TT0PAjKBLgC2TMGzcIcoBSoUdJTneDfrShR5q0NkLm1JSJUjTeAWbwyeofTW/Rx+osf39n+neaXSZxIDGxj2cHKCR4fkUiFgf0sZuN6OxG6yaAhCPWA/yBpFKlZjDW9rw/oKl5HQeb3Yt1lO+GEUCWsovv41c0vH9xvJ9H9izuTP26ZisMMKAWkVPeP3lV3cG23KWdm/jHvCk2mxSh3OH122j3TNSA0vCRi8Yc0WCF0Ghw+DFYnQVbe2cZc0dbiYZANq4a5wDgIo3ea3EmKun0Ln7Qfi/f4MfLmzSSDsWO/wEDUWQYcuHTuNxCTo6EW0Apd4k+KX0FJ+E33//JwNGG3eCc4BR8RBgO2XQoq3ISqMWREPXN2kbR93LXrjisc2aIhY0a5GCr23aWAaWbhya5QSpwvZNkRL27ZefoMGCHwr6+AF9QPNEd5HFQ6EubLp+QXYv9/InZnheDg8GITJZ+JtALGT8WPqGJnlo5OZLonP0P3693Fvi2/QmLCZX2Th0vFXV2VqITgpCdAXDsIqcstV06bXQTiOrHBkYu5ZNVjaOqZa5Ityj22OloD0OCr0VW7xxAIwDhIrb4eTY/m3ZYSWwwxk9GOnfRO4ZWGX6P8MkQ06bNMoFH4AsM0P/ibJxkG5rmrT1nhN5k1hSVsfJkC2WNNxSLGk1gmwho1wUKxQyetA1PLMXKgkzkOIFR67IciPvyGIjKNmdRpLF61CR4MboNA7gpkWyebSDnGk0i4sUJO+Rg+RaSlZ2rWBBkhZ57j157i157g3WVfjkOXmyjZc90dFSkAp5+gjvtFBYUyVv0MU76B1m+Bx6C5/syWgFQyV4E5fswZt/WnMNlVY111B5wHhq8aUK7iuzUEHuJOV1E9Amy1CxhSJueZN++SljK47QTV6K14pipO6oqthqy2K7pYmiLusFMJINfjGac4dQKilna/0UrRUHx67QWjhF4YHUTZMkSZNkRZI1o4WMnJGoQCqESBdFRZfElqRAm4grGbcwXXMIU8F01rKhG5quQhilVltZkcy64jCNuIQpMa2pxTNlQ/4LZwjQtb2ijT+/AHT5A6DsRJIVR2jGp5HKS+raZMnqWnF4fP7gKVCBmBIsVxwhjz+E2PKZV1z+7jf5P6r8P/En/9UWStpRVUVutdvQWZRkQ1S0qrsiyW6IYpmeTtkm8p+uuxqKJBMY8bbAiihbWQRTT1TDNZdDyZJ1VhKyMzZZn629XEAlhW0k/JqN1p65wH2Ey9KdntFsAKeZeU+LdMbOTDea+TTHwpU4j+0B1sfKhbZCeRXVjD5Zgy5f0wxLVokcnhsoXw+6w4zK18vzoEscDVBY+eo5j4QPBcxqarwMPTtna2rO69XUNNVg0fV0oEAtu6F3M6T/lk36b2tFqsh62J9xpdkoX2mOsX1PTO1bamrPM0Dos5vafp6pzW3nl9aVbw19ws5K+o6RnK+nUjubqq5GJazuhpoI2DURfGv0vykjy8Idr4ge7qWUz1ylfMlwjpmnelp5qrdyPa0t9W8ayfFPOVqaLH4lVeGQqMKHlCpYqzzfpCpYeX4v96qg70iiLsu6rmiq0lJ0KQwC0owe6o6uy21FN0RFlTVdM1YFAbnQj4OgyUrpx4RVPya11g9lR1FEXW+LhtIyNFVvL0bm0aV+mnKiH8tQeNeOK6IdFxkNCaN2mLXWjlQSPGgZcntxuED/HUH/MoW+w4q+87Whnz9Oiif036fQH7KSyGEeicxdzbtIn2BJXnGUCui6pCgtSTUMTWwr7dDS0/RycoIlKnmjRyu21Dcj2CNWsEe19hhK1g0uDMH75S4Eo25YtdaNtDeZP8GJC/AvlnGAa1bwr+sNfoHZVUzj3LjQjiC6cJDSjjGrdozrrR2MA+m5AD9cHng/I8xtsyqAXWsFYMtSzwX8+3mLHExY4Z/UGv6Uhyjnz+PgQgH28pcHZ1QAp9YKkKz/zTb/+If2fy8D/xkr/rNa458yACvWha+YAizLDzagKjDMUIELtoEvF1kDX9iwjSfq2Ra0NDlWobGs9CgGEx9W1xM9oKIfZIj+kk30l7yLfsms762BMaJgWBlgvGMD4x2vYKT7zgPvV5JEWVZEWdVlTdKCjrOtYTOk2IwyRuFfsWFztRKbbIEzpewrKO8T8wQLGG/vyXapNDdQ6SyxvWcT2/t6qXTWEiBbVGd5OS4f2HD5wCsu6Sm9+bhkTgDeDkyDDJh2V+VOisO0+3HjtVirBJO84Enbx2VAcQEZuOyx4bLHKy5ayFgTFUbZKoENkOhlIPGcDYnnvCORMl3bZK99ioSTwV732ZDY5x2J5rKRXluDw6HMK2s2yQs2OF7wCkc4byTLtdsmGu4ixKGm0DhgQ+OAVzQiOdBThJiMedgCEl4eEi/ZkHi5EonaOHKTPLEdsontkFcFlsSIBm9RZ8d5wj9iE/7R16OzPhXbdUYT+IpNbK941dn0SqJBPC176cT7TAf4kVX8NRtWr78eFc8V2zGb2I6/HrFd54ntDZvY3vBqGaTUSDJqGhL1X8ocd9bWt2AWrqlTaWW49ydsQJ1wCpRC1xRq0m7f9lZYh0Vlb2cu8sQk+1PeZS8bW5W9TWWfvegTk+zPOJW9rjyO7MdU9lmLm52zyf6cd9mXZnOW5NvSUhnRTiA4wiXwXZIXbQzl7As38Gcoudn7L7+6EDVH8NEFwpMbC7jfC3OIKUqSg3/wBCV9IXlYHHSSIYHVxnnNl6SAwb8T/vj7fwoZiyOkTyYOR8YaLQ4utGJx7K05n/Qtczh1TAhD/Fw04/riaDT9bPKBWWei6Z0ediLVNrLxxRNwIyXqgntgkWx63nRikWx8jvCdOZt6P0G9ckO9IodYMiFunHD7m3I9vnJlJBKELYHjQSTxeDn0fQimQ9B1zZ//H1BLBwjQ+l9KtRgAAC5IAQBQSwECFAAUAAgICADRQSEs0PpfSrUYAAAuSAEADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAO8YAAAAAA==" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
2 verschiedene Netze<br>
+
</center>
3 Kanten zu jeder Ecke<br>
+
 
3 Ecke zu jeder Fläche<br>
+
<u>Volumen:</u><br><br>
+
.         <math>V = a^3/12 * sqrt{2}</math> ≈ <math> 0,12a^3</math><br>
+
<u>Oberflächeninhalt:</u><br><br>
+
.          <math>O =  a^2  *  sqrt{3}</math> ≈ <math> 1,73a^2</math><br>
+
<u>Inkugelradius:</u><br><br>
+
.          <math>p =  a/12  *  sqrt{6}= p </math> ≈ <math> 0,2a</math><br>
+
<u>Umkugelradius:</u><br><br>
+
.          <math>R =  a/4  *  sqrt{6}= 3p </math> ≈ <math> 0,61a</math><br>
+
<u>Kantenkugelradius:</u><br><br>
+
.          <math>O =  a/4  *  sqrt{2}</math> ≈ <math> 0,35a</math><br>
+
<u>Pyramidenhöhe:</u><br><br>
+
.          <math>k = a^3  *  sqrt{6}= R + p </math> ≈ <math> 0,82a</math><br>
+
<u>Verhältnis von Volumen:</u><br><br>
+
.          <math>V / (V</math><sub>UK</sub><math>) = 2/9  * </math> π <math> *  sqrt{3}</math><br>
+
<u>Flächenwinkel:</u><br><br>
+
.          <math>cos </math> α <math> = 1/3</math><br>
+
  
</font>
+
[[Datei:Hexahedron-white.gif|rechts|120px|Hexaeder]][[Datei:Hexahedron-white.gif|links|Hexaeder]]
  
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
 
  
 +
<!--<center>{{#slideshare:eigenschaftendestetraeders-131005035717-phpapp01}}</center>
 
|}<noinclude>
 
|}<noinclude>
 
<!--http://www.3quarks.com/de/PlatonischeKoerper/index.html
 
<!--http://www.3quarks.com/de/PlatonischeKoerper/index.html
 +
</div>

Aktuelle Version vom 15. November 2013, 19:59 Uhr

Platonische Körper Briefpapier Button.pngHauptseite
Gemeinsamkeiten Briefpapier Button.pngGemeinsamkeiten
Tetraeder Briefpapier Button.pngTetraeder
Hexaeder Briefpapier Button.pngHexaeder
Oktaeder Briefpapier Button.pngOktaeder
Dodekaeder Briefpapier Button.pngDodekaeder
Ikosaeder Briefpapier Button.pngIkosaeder
Beweis Briefpapier Button.pngBeweis
In Natur-Umwelt Briefpapier Button.pngIn Natur/Umwelt
Bastelanleitung Briefpapier Button.pngBastelanleitung
Aufgaben Briefpapier Button.pngAufgaben



Hexaeder
Hexaeder
Hexaeder+ E-Schema mit Hintergrundfarbe W-Seminar Wiki.png



Hexaeder
Hexaeder


Navigationsmenü