besondere Zahlen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Alle Palindromzahlen von 11 bis 9999)
K (Die Kreiszahl Pi)
 
(143 dazwischenliegende Versionen von 10 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
''zurück:'' [[Jahr der Mathematik]]
+
__NOTOC__
 +
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
 +
[[Jahr der Mathematik/Gedichte|'''Gedichte''']]  '''·''' [[Jahr der Mathematik/Geschichten|'''Geschichten''']]  '''·''' [[Jahr der Mathematik/besondere Zahlen|'''Besondere Zahlen''']] '''·''' [[Jahr der Mathematik/Zahlen im Alltag|'''Zahlen im Alltag''']] '''·''' [[Jahr der Mathematik/Potenzen|'''Potenzen''']] '''·''' [[Jahr der Mathematik/Rap|'''Mathe-Rap''']] '''·''' [[Jahr der Mathematik/Kalender|'''Kalender''']] '''·'''  [[Jahr der Mathematik/Geometrie|'''Geometrie''']] '''·''' [[Jahr der Mathematik/Symmetrie|'''Symmetrie''']] '''·'''  [[Jahr der Mathematik/Quiz und Co|'''Quiz und Co. ''']] 
 +
</div>
 +
==Die zehn Ziffern==
 +
[[Bild:Oppermann_Ziffern.jpg]]
  
  
 +
[[Bild:Sudoku 6x6 für Kinder.jpg|200px|right]]
 +
In unserem Zahlensystem reichen '''10 Ziffern''', um alle Zahlen bauen zu können. Hier ist ein Sudoku aus 6 Ziffern:
  
==Palindromzahlen==
+
''Lösung durch Markieren des leeren Feldes sichtbar machen!''
+
===1. Beispiel===
+
<span style="color:#8B0000">Startzahl                      87</span> 
+
                       
+
<span style="color:#8B0000">Die umgedrehte Zahl addieren    78</span> 
+
<span style="color:#8B0000">                                --</span> 
+
                       
+
<span style="color:#8B0000 ">Die Zahl wieder umdrehen      165</span> 
+
                             
+
<span style="color:#8B0000">Dann wieder addieren          561</span> 
+
<span style="color:#8B0000">                              ---</span> 
+
                           
+
<span style="color:#8B0000 ">Das Ergebnis umdrehen        1353</span> 
+
<span style="color:#8B0000">                     
+
<span style="color:#8B0000">Wieder addieren              3531</span> 
+
<span style="color:#8B0000">                              ----</span> 
+
<span style="color:#8B0000"> <u style="color:#8B6914 ;background:#8B6914 ">Die Palindromzahl lautet        4884</u></span> 
+
  
<span style="color:#8B6914">Die Zahl 4884 ist eine Palindromzahl,weil man sie nicht mehr umdrehen kann.
+
{| style="background-color:#F4A460; spacing:0em; padding:0em"  
</span>
+
  
=== 2.Beispiel ===
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">6</u></span></center>
  
<span style="color:#8B0000">Startzahl                      14</span> 
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
                       
+
<center>[[Bild:Vier k.jpg]] </center>
<span style="color:#8B0000">Die Zahl addieren              41</span> 
+
<span style="color:#8B0000">                                --</span> 
+
<span style="color:#8B0000"> <u style="color:#8B6914 ;background:#8B6914 ">Das Palindrom lautet          55</u></span>
+
  
<span style="color:#8B0000"> <u style="color:#8B6914 ;background:#8B6914 ">Hier kommt das Palidrom schon bei der ersten Rechnung,weil man 55 nicht mehr umdrehen kann.</u></span>
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">1</u></span></center>
  
=== Alle Palindromzahlen von 11 bis 9999 ===
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">5</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">3</u></span></center>
  
<span style="color:#008B00">Es gibt neun zweistellige Palindromzahlen:  
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Zwei k.jpg]] </center>
  
11, 22, 33, 44, 55, 66, 77, 88, 99.
+
|-
  
Es gibt 90 dreistellige Palindromzahlen:  
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">2</u></span></center>
  
101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999. 
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">5</u></span></center>
  
Und es gibt auch 90 vierstellige Palindromzahlen:
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Drei k.jpg]] </center>
  
1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
<span>
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">4</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Eins k.jpg]] </center>
  
== Die Palidrom-Geschichte ==
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">6</u></span></center>
  
==Die Kreiszahl Pi==
+
|-
  
{|
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
|width="30%" |Pi ist eine mathematische Zahl(3,1415927...). Sie wird für viele Formeln verwendet. Ein Beispiel dafür ist die Flächenberechnung eines Kreises.
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">3</u></span></center>
|width="15%"|[[Bild:Pi-Bild3.jpg|thumb|Dieses Zeichen steht für die Zahl PI
+
]]
+
|width="15%"|>Durchmesser
+
  
|valign="top" |Um einen Kreis zu berechnen misst man als erstes den Durchmesser des Kreises(d).
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
Dann nimmt man die Zahl mit sich selber mal(d im Quadrat,d2).Danach nimmt man es mal Pi und teilt       
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">2</u></span></center>
es durch vier(siehe Formel).
+
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">5</u></span></center>
  
'''Das fasziniert mich an Pi'''
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Sechs k.jpg]] </center>
  
Pi ist eine unendliche Zahl!Wieviele Kommastellen hat Pi, welche die Menschheit kennt?
+
| width="60px" height="60px" style="background-color:#FFFFFF"|
Antwort: Seit September 1999 kennt man schon 206 Milliarden Nachkommastellen dieser Zahl.
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">4</u></span></center>
  
Was ist die letzte Zahl von Pi?
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
Antwort:Pi ist eine irrationale unendliche Zahl,
+
<center>[[Bild:Eins k.jpg]] </center>
hat daher keine letzte Zahl, da sie ja unendlich ist.
+
  
'''Pi im Alltag'''
+
|-
  
Wo kommt Pi im Alltag vor?
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
Antwort:z.B bei meinem Fahrradtacho(zum Berechnen der Geschwindigkeit)
+
<center>[[Bild:Eins k.jpg]] </center>
|}
+
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">6</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Vier k.jpg]] </center>
  
==Die Fibonacci-Folge==
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">2</u></span></center>
  
[[Bild:Fibonacci-Folge_200.png|left]]
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
Anfangszahl: 0 und 1
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">5</u></span></center>
  
Die darauf folgenden Zahlen ergeben sich aus denn davor stehenden Zahlen.  Aber nicht alle Zahlen werden zusammen gezählt, sondern nur die letzten zwei Zahlen. So ergibt sich eine endlose Zahlenreihe.
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">3</u></span></center>
  
<font color="#000080">Bsp:</font>
+
|-
0,1,1,2,3,5,8,13,21,34,55,89...und wie geht es weiter?
+
<u style="color:#FF4040;background:#FF4040">142,231,373,604</u>
+
  
Also wird , bei den Startzahlen 0 und 1, einfach die 0 und die 1 addiert und das Ergebnis ist 1. Dann zählt man 1 und 1 zusammen und erhält 2. Jetzt muß man 1 und 2 addieren. Diesmal kommt 3 raus. Wenn man jetzt weitermacht, kommt als nächstes heraus:
+
| width="50px" height="50px" style="background-color:#FFFFFF"|
5,8,13,21,34,55,89,...
+
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">4</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Eins k.jpg]] </center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">2</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Drei k.jpg]] </center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">6</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">5</u></span></center>
  
 +
|-
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Fünf k.jpg]] </center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">3</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">6</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">1</u></span></center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center>[[Bild:Zwei k.jpg]] </center>
  
 +
| width="50px" height="50px" style="background-color:#FFFFFF"|
 +
<center><span style="font-size:20pt;"><u style="color:#FFFFFF;background:#FFFFFF">4</u></span></center>
  
==Die römischen Zahlen==
+
|}
  
* Memory von [[Benutzer:Christian Wasser|Christian Wasser]]
 
  
{{Benutzer:Christian Wasser/Memory}}
+
Bei den Römern war das anders. Im nächsten Abschnitt erfährst du etwas über die Römischen Zahlen.
  
 +
==Die römischen Zahlen==
 +
*[http://wiki.zum.de/Benutzer:RMG/Projekt#Memory_zu_den_R.C3.B6mischen_Zahlen '''Memory'''] von [[Benutzer:Christian Wasser|Christian Wasser]]
  
 +
:::{| style="background-color:#FFFFFF; spacing:0em; padding:0em"
  
==Die Primzahlen==
+
| width="100px" height="100px" style="background-color:lightblue"|
von [[Benutzer:René Appel|René Appel]]
+
<center>{{versteckt|1=<span style="font-size:25pt">1</span>}}</center>
  
=== Was sind Primzahlen ?===
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">5</span>}}</center>
  
'''Primzahlen''' sind Zahlen, die '''nur durch Eins und sich selbst teilbar''' sind. Also '''T(a)={1;a}'''
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">C</span>}}</center>
  
Verstanden? Ja,na dann kannst Du mir sicher sagen, ob diese Zahlen auch Primzahlen sind. Wenn du wissen willst, was die richtige Lösung ist, markiere das farbige Feld.
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">V</span>}}</center>
  
'''89'''<u style="color:red;background:red"> ist eine Primzahl.</u> 
+
|-
  
'''21'''<u style="color:blue;background:blue"> ist keine Primzahl.</u>
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">100</span>}}</center>
  
'''53'''<u style="color:green;background:green"> ist eine Primzahl.</u>
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">10</span>}}</center>
  
Eine besondere '''Primzahl''' ist '''die Zwei''', da sie die '''einzige gerade Primzahl''' ist.
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">I</span>}}</center>
  
=== Wie man Primzahlen siebt ===
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">CXI</span>}}</center>
  
Wenn du Schwierigkeiten mit '''Primzahlen''' hast, dann bist du hier genau richtig, denn ein kluger '''alter Grieche''', der '''Erathostenes''' hieß, konnte '''Primzahlen''' aus dem '''Hunderter-Raum''' ''"heraussieben."'' Wie er dass gemacht hat, kann ich dir zeigen und erklären:
+
|-
  
 +
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">X</span>}}</center>
  
Am besten lässt sich dass zeigen mit einer Hunderter-Tabelle.
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">XXII</span>}}</center>
  
'''1.'''
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">50</span>}}</center>
  
Zuerst musst du die Zahlen, die durch zwei teilbar sind markieren. Dabei musst du beachten, dass die zwei sowie alle anderen Zahlen, durch die du teilst, hier eine Sonderzahl ist.
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">XVI</span>}}</center>
  
'''2.'''
+
|-
  
Nun markierst du auch die durch drei teilbaren Zahlen und gehst genauso wie bei Schritt 1 vor.
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">111</span>}}</center>
  
'''3.'''
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">L</span>}}</center>
  
Du machst dasselbe wie bei den vorherigen Schritten auch bei den Zahlen aus der Vielfachenmenge von fünf(1) und sieben(2). 
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">22</span>}}</center>
  
Alle nun '''nicht markierten Zahlen''' sind '''Primzahlen.'''
+
| width="100px" height="100px" style="background-color:lightblue"|
 +
<center>{{versteckt|1=<span style="font-size:25pt">16</span>}}</center>
  
Wenn du Alles richtig gemacht hast, dann müsstest du 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 und 97 rausgesiebt haben. Aber Vorsicht! Die 1 selbst ist keine Primzahl!
+
|}
  
So funktioniert das '''Sieb des Erathostenes'''.
+
==Die Primzahlen==
 +
von [[Benutzer:René Appel|René Appel]] und [[Benutzer:Julian Lenhart|Julian Lenhart]]
  
 +
;Was sind Primzahlen?
 +
:Primzahlen sind Zahlen, die nur durch '''Eins''' und '''sich selbst''' teilbar sind. Also '''T(a)={1;a}'''
 +
:Verstanden? Na, dann kannst Du mir sicher sagen, ob diese Zahlen auch Primzahlen sind. Wenn du wissen willst, was die richtige Lösung ist, markiere das farbige Feld.
  
 +
:'''89'''  <u style="color:red;background:red"> ist eine Primzahl.</u> 
 +
:'''21'''  <u style="color:blue;background:blue"> ist keine Primzahl.</u>
 +
:'''53'''  <u style="color:green;background:green"> ist eine Primzahl.</u>
 +
[[Bild:Erathostenes.jpg|right]]
 +
:Eine besondere Primzahl ist ''die Zwei'', da sie die ''einzige gerade Primzahl'' ist.
  
==Die zehn Ziffern==
 
===<font color=",magenta">Alle Ziffern im Überblick</font>===
 
  
  
[[Bild:Larissa Oppermann 1.jpg]]
+
;Wie man Primzahlen siebt
[[Bild:Larissa Oppermann2.jpg]]
+
[[Bild:Zahl drei 100px.jpg]]
+
[[Bild:Larissa Oppermann 4.jpg]]
+
[[Bild:Larissa Oppermann 5b.jpg]]
+
[[Bild:Larissa Oppermann 6.jpg]]
+
[[Bild:Larissa Oppermann 7.jpg]]
+
[[Bild:Larissa Oppermann 8.jpg]]
+
[[Bild:Larissa Oppermann 9.jpg]]
+
[[Bild:Larissa Oppermann 0.jpg]]
+
  
===<font color=",blue">Zahlen-Steckbriefe</font>===
+
:Wenn du Schwierigkeiten mit '''Primzahlen''' hast, dann bist du hier genau richtig, denn ein kluger '''alter Grieche''', der '''Erathostenes''' hieß, konnte '''Primzahlen''' aus dem '''Hunderter-Raum''' ''"heraussieben."'' Wie er dass gemacht hat, kann ich dir zeigen und erklären:
 +
:Am besten lässt sich dass zeigen mit einer Hunderter-Tabelle.
 +
[[Bild:Lenhart_Vielf5_03.jpg|right]]
 +
'''1.'''
 +
:Zuerst musst du die Zahlen, die durch zwei teilbar sind markieren. Dabei musst du beachten, dass die zwei sowie alle anderen Zahlen, durch die du teilst, hier eine Sonderzahl ist.
  
 +
'''2.'''
 +
:Nun markierst du auch die durch drei teilbaren Zahlen und gehst genauso wie bei Schritt 1 vor.
  
'''''Geheimnisvolle Fremde'''''             [[Bild:Larissa Oppermann 1.jpg]]
+
'''3.'''
 +
:Du machst dasselbe wie bei den vorherigen Schritten auch bei den Zahlen aus der Vielfachenmenge von fünf(1) und sieben(2).
  
'''Zahl:'''        1/eins
 
  
'''Alter:'''       leider unbekannt
+
 
 +
Alle nun '''nicht markierten Zahlen''', bis auf die Eins, sind '''Primzahlen.'''
 +
Wenn du Alles richtig gemacht hast, dann müsstest du  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 und 97 rausgesiebt haben. Aber Vorsicht! Die 1 selbst ist keine Primzahl!
  
'''Spitzname:'''    leider unbekannt
+
;So funktioniert also das '''Sieb des Erathostenes!
  
'''Lieblingsb.: ''' geheimnisvoll sein
+
Und hier kannst du die Primzahlen von einem [http://arndt-bruenner.de/mathe/scripts/eratosthenes.htm Programm sieben lassen].
  
'''Besonderheit:''' komische Kleider
+
==Palindromzahlen==
 +
von [[Benutzer:Patrik-Kevin Mahr|Patrik-Kevin Mahr]], [[Benutzer:Florian Rippstein|Florian Rippstein]], [[Benutzer:Manuel.Dünninger|Manuel Dünninger]]
 +
*Das sind '''Palindromzahlen''': 212, 4994, 12000021,  555, ...........
 +
*Woran erkennst du Palindromzahlen? - Egal, ob man sie von vorne oder auch von hinten liest, ergeben sie den gleichen Wert.
 +
*Nicht alle Zahlen sind palindrom? Beispiel 2929292929292929292929292929292929292392929292929292
 +
Das ist keine Palidromzahl wengen der 3; hier machen wir es sichtbar: 2929292929292929292929292929292929292'''''3'''''9292929292929
  
'''Zur Zahl:'''     die Zahl eins ist eine besondere Zahl beim Multiplizieren...  
+
;1. Beispiel
 +
<span style="color:#8B0000">
 +
Startzahl                      87
 +
Zahl umdrehen                  78
 +
                                ---
 +
Beide Zahlen addieren          165
 +
Ergebnis umdrehen              561
 +
                                ---
 +
Beide Zahlen addieren          726
 +
Zahl umdrehen                  627
 +
                              ----
 +
Beide Zahlen addieren        1353
 +
Ergebnis umdrehen            3531
 +
                                ---
 +
Beide Zahlen addieren        '''4884''' ist eine '''Palindromzahl''', weil man sie nicht mehr umdrehen kann.
  
 +
</span>
  
 +
;2.Beispiel
 +
<span style="color:#8B0000">
 +
Startzahl                      14
 +
Zahl umdrehen                  41
 +
                                ---
 +
Beide Zahlen addieren          '''55'''  ist bereits die '''Palindromzahl'''.
 +
                                      Hier kommt das Palidrom schon bei der ersten Rechnung,
 +
                                      weil man 55 nicht mehr umdrehen kann
 +
 
 +
</span>
  
'''''Clown'''''                               [[Bild:Larissa Oppermann2.jpg]]
+
*Welche Palindromzahl ergibt sich mit der Startzahl '''619''':<center>{{versteckt|6886}}</center>''
 +
*Welche Palindromzahl ergibt sich mit der Startzahl '''69 ''':<center>{{versteckt|4884}}</center>''
 +
*Welche Palindromzahl ergibt sich mit der Startzahl '''159''':<center>{{versteckt|1221}}</center>''
  
'''Zahl:'''        2/zwei
 
  
'''Alter:'''        22 Jahre
+
;Alle Palindromzahlen von 11 bis 9999
  
'''Spitzname:'''    Funny
+
<span style="color:#008B00">Es gibt neun zweistellige Palindromzahlen: </span>
  
'''Lieblingsb.:'''  lustig sein
+
11, 22, 33, 44, 55, 66, 77, 88, 99.  
  
'''Besonderheit:''' rote Haare, rote Nase (reicht das?!)
+
<span style="color:#008B00">Es gibt 90 dreistellige Palindromzahlen: </span>
  
'''Zur Zahl:'''    die Zahl zwei ist die kleinste Primzahl und
+
101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999. 
die erste gerade Zahl,...
+
  
 +
<span style="color:#008B00">Und es gibt auch 90 vierstellige Palindromzahlen:</span>
  
 +
1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999
  
'''''Prinzessin'''''     [[Bild:Zahl drei 100px.jpg]]
+
                      '''''Palindrom Infos'''''
  
'''Zahl:'''         3/drei                   
+
;Woher kommt der Name "Palindromzahl"?
 +
 +
Ein '''Palindrom''' ist etwas, das vorwärts '''und''' rückwärts gelesen einen Sinn ergibt. Da jede Zahl vorwärts und rückwärts gelesen wieder eine sinnvolle Zahl ergibt, gilt bei Zahlenpalindromen, dass es jedes Mal die gleiche Zahl sein muss.
 +
 +
                               
 +
  
'''Alter:'''        sagt sie nicht (zu eitel)
+
1.Beispiele für Wortpalindrome
 +
:HANNAH, OTTO, LAGEREGAL, REITTIER, RENTNER
  
'''Spitzname:'''    Prinzesschen
 
  
'''Lieblingsb.:'''  schminken, hübsch sein, herumkommandieren
+
2.Beispiele für Satzpalindrome
 +
:<span style="color:darkblue">Ein Neger mit Gazelle zagt im Regen nie.</span>
  
'''Besonderheit:''' "großzügig" geschminkt
+
:<span style="color:darkblue">Trug Tim eine so helle Hose nie mit Gurt?</span> 
  
'''Zur Zahl:''' die Zahl drei ist die zweitkleinste Primzahl...
+
3.Satzpalindrome gibt es natürlich auch in anderen Sprachen! Hier ein paar Beispiele:
  
 +
englisch:
  
 +
:<span style="color:darkblue">A man, a plan, a canal - Panama!</span>
  
'''''Professor'''''  [[Bild:Larissa Oppermann 4.jpg]]
+
[[Bild:Sator-Quadrat.jpg|right]]
 +
lateinisch:
  
'''Zahl:'''        4/vier
+
:<span style="color:darkblue">Sator arepo tenet opera rotas</span> (Es könnte "Sämann Arepo hält mit Mühe die Räder" bedeuten, man weiß das aber nicht genau)
  
'''Alter:'''        (ich schätze mal) über vierzig Jahre
+
:Dieses Palindrom wurde z.B. an der Wand eines Gebäudes in [http://de.wikipedia.org/wiki/Pompeji Pompeji] entdeckt und ist mindesten 2000 Jahre alt. Es ist ein ganz besonderes Palindrom: Jedes einzelne Wort ist selbst wieder ein Palindrom und es lässt sich auch in ein Magisches Quadrat schreiben! Mehr Informationen gibt es in diesem [http://de.wikipedia.org/wiki/SATOR_AREPO_TENET_OPERA_ROTAS Wikipedia-Artikel].
  
'''Spitzname:'''    Schlaubi
 
  
'''Lieblingsb.:'''  experimentieren, Krawatten tragen
+
Noch mehr Palindrome findest du auf dieser [http://www.jps.at/palindromes/ Internet-Seite]
  
'''Besonderheit:''' hochstehende Haare (weil manchmal was in die Luft geht)
+
== Palindrom-Quiz ==
  
'''Zur Zahl:'''    die Zahl vier ist die kleinste Quadratzahl...
+
'''''Lies dir noch mal die Infos durch'''''
  
 +
<quiz display="simple">
  
  
'''''Pirat''''' [[Bild:Larissa Oppermann 5b.jpg]]
 
  
'''Zahl:'''        5/fünf
+
Wo wurde dieses Bild gefunden? [[Bild:Sator-Quadrat.jpg|right]] }
  
'''Alter:'''        sagt er mir nicht
+
-Sand am Main
 +
-Ottendorf
 +
+Hercolaneum
 +
-Rom
 +
-Im Haßfurter Regimontanus Gymnasium
 +
-Pompeji             
  
'''Spitzname:'''    Einaugenkopf (bitte nicht ihm sagen, hab ich mir ausgedacht!)
+
{ Wie alt sind Palindrome? }
  
'''Lieblingsb.:'''  andere Zahlen - auch den König - ausrauben
+
+2000 Jahre
 +
+1900-2100 Jahre
 +
-1800-1999 Jahre
 +
-1700 Jahre
 +
-1000-1500 Jahre
 +
+1000-2500 Jahre
 +
-3000 Jahre
  
'''Besonderheit:''' ein Auge, kaputte Klamotten
+
{ Welche Zahlen sind Palindrome? }
 +
+292
 +
+101010101
 +
-9292929292392992929292292929
 +
+122221
 +
-60064
 +
-3034
 +
-3043
 +
-12
 +
+11111511111
 +
+232
 +
-23
 +
+-11
 +
+22
 +
  
'''Zur Zahl:'''      die Zahl fünf ist die drittkleinste Primzahl...
+
</quiz>
  
 +
==Die Fibonacci-Zahlen==
 +
Das sind die ersten'''Fibonacci-Zahlen:''' <big>0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...</big>
  
 +
'''Und wie geht es weiter?''' <u style="color:#FF4040;background:#FF4040">144,231,233, 377</u>
  
'''''Künstler''''' [[Bild:Larissa Oppermann 6.jpg]]
 
  
'''Zahl:'''         6/sechs
+
'''Wie entsteht diese Fibonacci-Folge?'''
 +
::Anfangszahlen: 0 und 1
 +
::Eine Fibonacci-Zahl ergibt sich aus der Summe der beiden vorhergehenden Fibonacci-Zahlen. So ergibt sich eine endlose Zahlenreihe.
 +
::Also werden die Startzahlen 0 und 1 einfach addiert. Das Ergebnis ist 1. Dann zählt man 1 und 1 zusammen und erhält 2. Jetzt muß man 1 und 2 addieren. Diesmal kommt 3 raus. Wenn man jetzt weitermacht, kommt als nächstes heraus: 5, 8, 13, 21, 34, 55, 89,...
  
'''Alter:'''        36 Jahre
 
  
'''Spitzname:'''   Klecksi
+
'''In diesem Bild stecken auch die Fibonacci-Zahlen. Findest du sie'''
 +
[[Bild:Fibonaccizahlen.jpg|left]]
 +
<big>
 +
::<font color="#ff4040">1</font> + <font color="#ff1493">1</font> = <font color="#0000cd">2</font>
  
'''Lieblingsb.:'''  malen, zeichnen
+
::<font color="#ff1493">1</font> + <font color="#0000cd">2</font> = <font color="#000000">3</font>
  
'''Besonderheit:''' Kleckse auf dem Malerkittel
+
::<font color="#0000cd">2</font> + <font color="#000000">3</font> = <font color="#ff00ff">5</font>
  
'''Zur Zahl:'''   
+
::<font color="#000000">3</font> + <font color="#ff00ff">5</font> = <font color="#00cd00">8</font>
  
 +
::<font color="#ff00ff">5</font> + <font color="#00cd00">8</font> = <font color="#006400">13</font>
 +
</big>
 +
von [[Benutzer:Paul mentzel|Paul Mentzel]]
 +
                                              1
 +
                                              1 1
 +
                                            1 2 1
 +
                                            1 3 3 1
 +
                                          1 4 6 4 1
 +
                                          1 5 10 10 1
  
 +
==Die Kreiszahl Pi==
 +
von [[Benutzer:Adrian mangold|Adrian Mangold]]
  
'''''König''''' [[Bild:Larissa Oppermann 7.jpg]]
 
  
'''Zahl:'''         7/sieben
+
:[http://pi.ytmnd.com/ Der Pi-Song]
 +
:'''Die ersten 100 Stellen sind:
 +
''' 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
 +
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
  
'''Alter:'''       70 Jahre
+
'''Das fasziniert mich an Pi''':
+
*
'''Spitzname:'''    Mr. King oder auch Thronhocker
+
*
 +
*
  
'''Lieblingsb.:''' auf seinem Thron "hocken", regieren
+
'''Wo kommt Pi im Alltag vor?'''
 +
*
 +
*
 +
*
  
'''Besonderheit:''' wahrscheinlich größte Krone der Welt
+
'''Wie kann man Pi bestimmen?'''
  
'''Zur Zahl:'''
 
  
 +
{|
 +
|width="30%" |Pi ist eine mathematische Zahl(3,1415927...). Sie wird für viele Formeln verwendet. Ein Beispiel dafür ist die Flächenberechnung eines Kreises.
 +
|width="15%"|[[Bild:Pi-Bild3.jpg|thumb|Dieses Zeichen steht für die Zahl PI
 +
]]
 +
|width="15%"|>durchmesser
  
 +
|valign="top" |Um einen Kreis zu berechnen misst man als erstes den Durchmesser des Kreises(d).
 +
Dann nimmt man die Zahl mit sich selber mal(d im Quadrat,d2).Danach nimmt man es mal Pi und teilt       
 +
es durch vier(siehe Formel).
  
'''''Zauberer''''' [[Bild:Larissa Oppermann 8.jpg]]
 
  
'''Zahl:'''         8/acht
+
'''Das fasziniert mich an Pi'''
  
'''Alter:'''        darf ich nicht sagen (sonst verwandelt er mich in eine Giraffe...)
+
Pi ist eine unendliche Zahl!Wieviele Kommastellen hat Pi, welche die Menschheit kennt?
 +
Antwort: Seit September 1999 kennt man schon 206 Milliarden Nachkommastellen dieser Zahl.
  
'''Spitzname:'''    Hokus-Pokus
+
Was ist die letzte Zahl von Pi?
 +
Antwort:Pi ist eine irrationale unendliche Zahl,
 +
hat daher keine letzte Zahl, da sie ja unendlich ist.
  
'''Lieblingsb.:'''  in Giraffen verwandeln
+
'''Pi im Alltag'''
 
+
'''Besonderheit:''' spitzer Zauberhut
+
 
+
'''Zur Zahl:'''
+
 
+
 
+
 
+
'''''Vampir''''' [[Bild:Larissa Oppermann 9.jpg]]
+
 
+
'''Zahl:'''        9/neun
+
 
+
'''Alter:'''        bestimmt schon sehr alt!?!
+
 
+
'''Spitzname:'''Dracula
+
 
+
'''Lieblingsb.:'''  (was wohl!?)
+
 
+
'''Besonderheit:''' auffällig schwarzer Mantel
+
 
+
'''Zur Zahl:'''
+
  
 +
Wo kommt Pi im Alltag vor?
 +
Antwort:z.B bei meinem Fahrradtacho(zum Berechnen der Geschwindigkeit)
 +
|}
  
 +
== Quiz zu Einheiten ==
  
'''''Blumenmädchen''''' [[Bild:Larissa Oppermann 0.jpg]]
+
<quiz display="simple">
  
'''Zahl:'''        0/null
 
  
'''Alter:'''        10 Jahre
+
{ Wie viel wiegt ein 1/10 Pfund ? }
  
'''Spitzname:'''    Blümchen
+
-250g
  
'''Lieblingsb.:'''  Blumen verteilen
+
+10g
  
'''Besonderheit:''' immer als Blume verkleidet
+
-1g
  
'''Zur Zahl:'''   
+
-500g
  
  
 +
Fortsetzung folgt!!!!!!!!
  
So, jetzt kennt ihr die Zahlen und alles was sie betrifft.
+
Danke [[Benutzer:Katharina Schneider|Katharina Schneider ]]
Habt ihr Spaß gehabt? Hoffentlich
+

Aktuelle Version vom 16. Dezember 2017, 13:07 Uhr

Gedichte · Geschichten · Besondere Zahlen · Zahlen im Alltag · Potenzen · Mathe-Rap · Kalender · Geometrie · Symmetrie · Quiz und Co.

Die zehn Ziffern

Oppermann Ziffern.jpg


Sudoku 6x6 für Kinder.jpg

In unserem Zahlensystem reichen 10 Ziffern, um alle Zahlen bauen zu können. Hier ist ein Sudoku aus 6 Ziffern:

Lösung durch Markieren des leeren Feldes sichtbar machen!

6
Vier k.jpg
1
5
3
Zwei k.jpg
2
5
Drei k.jpg
4
Eins k.jpg
6
3
2
5
Sechs k.jpg
4
Eins k.jpg
Eins k.jpg
6
Vier k.jpg
2
5
3
4
Eins k.jpg
2
Drei k.jpg
6
5
Fünf k.jpg
3
6
1
Zwei k.jpg
4


Bei den Römern war das anders. Im nächsten Abschnitt erfährst du etwas über die Römischen Zahlen.

Die römischen Zahlen

1
5
C
V
100
10
I
CXI
X
XXII
50
XVI
111
L
22
16

Die Primzahlen

von René Appel und Julian Lenhart

Was sind Primzahlen?
Primzahlen sind Zahlen, die nur durch Eins und sich selbst teilbar sind. Also T(a)={1;a}
Verstanden? Na, dann kannst Du mir sicher sagen, ob diese Zahlen auch Primzahlen sind. Wenn du wissen willst, was die richtige Lösung ist, markiere das farbige Feld.
89 ist eine Primzahl.
21 ist keine Primzahl.
53 ist eine Primzahl.
Erathostenes.jpg
Eine besondere Primzahl ist die Zwei, da sie die einzige gerade Primzahl ist.


Wie man Primzahlen siebt
Wenn du Schwierigkeiten mit Primzahlen hast, dann bist du hier genau richtig, denn ein kluger alter Grieche, der Erathostenes hieß, konnte Primzahlen aus dem Hunderter-Raum "heraussieben." Wie er dass gemacht hat, kann ich dir zeigen und erklären:
Am besten lässt sich dass zeigen mit einer Hunderter-Tabelle.
Lenhart Vielf5 03.jpg

1.

Zuerst musst du die Zahlen, die durch zwei teilbar sind markieren. Dabei musst du beachten, dass die zwei sowie alle anderen Zahlen, durch die du teilst, hier eine Sonderzahl ist.

2.

Nun markierst du auch die durch drei teilbaren Zahlen und gehst genauso wie bei Schritt 1 vor.

3.

Du machst dasselbe wie bei den vorherigen Schritten auch bei den Zahlen aus der Vielfachenmenge von fünf(1) und sieben(2).


Alle nun nicht markierten Zahlen, bis auf die Eins, sind Primzahlen. Wenn du Alles richtig gemacht hast, dann müsstest du 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 und 97 rausgesiebt haben. Aber Vorsicht! Die 1 selbst ist keine Primzahl!

So funktioniert also das Sieb des Erathostenes!

Und hier kannst du die Primzahlen von einem Programm sieben lassen.

Palindromzahlen

von Patrik-Kevin Mahr, Florian Rippstein, Manuel Dünninger

  • Das sind Palindromzahlen: 212, 4994, 12000021, 555, ...........
  • Woran erkennst du Palindromzahlen? - Egal, ob man sie von vorne oder auch von hinten liest, ergeben sie den gleichen Wert.
  • Nicht alle Zahlen sind palindrom? Beispiel 2929292929292929292929292929292929292392929292929292

Das ist keine Palidromzahl wengen der 3; hier machen wir es sichtbar: 292929292929292929292929292929292929239292929292929

1. Beispiel

Startzahl                       87
Zahl umdrehen                   78
                               ---
Beide Zahlen addieren          165
Ergebnis umdrehen              561
                               ---
Beide Zahlen addieren          726
Zahl umdrehen                  627
                              ----
Beide Zahlen addieren         1353
Ergebnis umdrehen             3531
                               ---
Beide Zahlen addieren         4884 ist eine Palindromzahl, weil man sie nicht mehr umdrehen kann.

2.Beispiel

Startzahl                       14
Zahl umdrehen                   41
                               ---
Beide Zahlen addieren           55   ist bereits die Palindromzahl.
                                     Hier kommt das Palidrom schon bei der ersten Rechnung,
                                     weil man 55 nicht mehr umdrehen kann
 

  • Welche Palindromzahl ergibt sich mit der Startzahl 619:
6886
  • Welche Palindromzahl ergibt sich mit der Startzahl 69 :
4884
  • Welche Palindromzahl ergibt sich mit der Startzahl 159:
1221


Alle Palindromzahlen von 11 bis 9999

Es gibt neun zweistellige Palindromzahlen:

11, 22, 33, 44, 55, 66, 77, 88, 99.

Es gibt 90 dreistellige Palindromzahlen:

101, 111, 121, 131, 141, 151, 161, 171, 181, 191, ..., 909, 919, 929, 939, 949, 959, 969, 979, 989, 999.

Und es gibt auch 90 vierstellige Palindromzahlen:

1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, ..., 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999

                      Palindrom Infos
Woher kommt der Name "Palindromzahl"?

Ein Palindrom ist etwas, das vorwärts und rückwärts gelesen einen Sinn ergibt. Da jede Zahl vorwärts und rückwärts gelesen wieder eine sinnvolle Zahl ergibt, gilt bei Zahlenpalindromen, dass es jedes Mal die gleiche Zahl sein muss.



1.Beispiele für Wortpalindrome

HANNAH, OTTO, LAGEREGAL, REITTIER, RENTNER


2.Beispiele für Satzpalindrome

Ein Neger mit Gazelle zagt im Regen nie.
Trug Tim eine so helle Hose nie mit Gurt?

3.Satzpalindrome gibt es natürlich auch in anderen Sprachen! Hier ein paar Beispiele:

englisch:

A man, a plan, a canal - Panama!
Sator-Quadrat.jpg

lateinisch:

Sator arepo tenet opera rotas (Es könnte "Sämann Arepo hält mit Mühe die Räder" bedeuten, man weiß das aber nicht genau)
Dieses Palindrom wurde z.B. an der Wand eines Gebäudes in Pompeji entdeckt und ist mindesten 2000 Jahre alt. Es ist ein ganz besonderes Palindrom: Jedes einzelne Wort ist selbst wieder ein Palindrom und es lässt sich auch in ein Magisches Quadrat schreiben! Mehr Informationen gibt es in diesem Wikipedia-Artikel.


Noch mehr Palindrome findest du auf dieser Internet-Seite

Palindrom-Quiz

Lies dir noch mal die Infos durch

1. Wo wurde dieses Bild gefunden?
Sator-Quadrat.jpg
Sand am Main
Ottendorf
Hercolaneum
Rom
Im Haßfurter Regimontanus Gymnasium
Pompeji

2. Wie alt sind Palindrome?

2000 Jahre
1900-2100 Jahre
1800-1999 Jahre
1700 Jahre
1000-1500 Jahre
1000-2500 Jahre
3000 Jahre

3. Welche Zahlen sind Palindrome?

292
101010101
9292929292392992929292292929
122221
60064
3034
3043
12
11111511111
232
23
-11
22

Punkte: 0 / 0


Die Fibonacci-Zahlen

Das sind die erstenFibonacci-Zahlen: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Und wie geht es weiter? 144,231,233, 377


Wie entsteht diese Fibonacci-Folge?

Anfangszahlen: 0 und 1
Eine Fibonacci-Zahl ergibt sich aus der Summe der beiden vorhergehenden Fibonacci-Zahlen. So ergibt sich eine endlose Zahlenreihe.
Also werden die Startzahlen 0 und 1 einfach addiert. Das Ergebnis ist 1. Dann zählt man 1 und 1 zusammen und erhält 2. Jetzt muß man 1 und 2 addieren. Diesmal kommt 3 raus. Wenn man jetzt weitermacht, kommt als nächstes heraus: 5, 8, 13, 21, 34, 55, 89,...


In diesem Bild stecken auch die Fibonacci-Zahlen. Findest du sie

Fibonaccizahlen.jpg

1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
3 + 5 = 8
5 + 8 = 13

von Paul Mentzel

                                              1
                                             1 1
                                            1 2 1
                                           1 3 3 1
                                          1 4 6 4 1
                                         1 5 10 10 1

Die Kreiszahl Pi

von Adrian Mangold


Der Pi-Song
Die ersten 100 Stellen sind:
 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 

Das fasziniert mich an Pi:

Wo kommt Pi im Alltag vor?

Wie kann man Pi bestimmen?


Pi ist eine mathematische Zahl(3,1415927...). Sie wird für viele Formeln verwendet. Ein Beispiel dafür ist die Flächenberechnung eines Kreises.
Datei:Pi-Bild3.jpg
Dieses Zeichen steht für die Zahl PI
>durchmesser Um einen Kreis zu berechnen misst man als erstes den Durchmesser des Kreises(d).

Dann nimmt man die Zahl mit sich selber mal(d im Quadrat,d2).Danach nimmt man es mal Pi und teilt es durch vier(siehe Formel).


Das fasziniert mich an Pi

Pi ist eine unendliche Zahl!Wieviele Kommastellen hat Pi, welche die Menschheit kennt? Antwort: Seit September 1999 kennt man schon 206 Milliarden Nachkommastellen dieser Zahl.

Was ist die letzte Zahl von Pi? Antwort:Pi ist eine irrationale unendliche Zahl, hat daher keine letzte Zahl, da sie ja unendlich ist.

Pi im Alltag

Wo kommt Pi im Alltag vor? Antwort:z.B bei meinem Fahrradtacho(zum Berechnen der Geschwindigkeit)

Quiz zu Einheiten

1. { Wie viel wiegt ein 1/10 Pfund ?

250g
10g
1g
500g

Punkte: 0 / 0