Funktionen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Teste dein Wissen)
 
(9 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
<div style="padding:1px;background: #ABAABF;border:0px groove;">
+
<div style="background: #ABAABF;">
  
  
<center><table border="0" width="1000px" cellpadding=2 cellspacing=2>
 
  
<tr><td  width="800px" valign="top">
+
 
 +
<center><table border=0 width="800px" cellpadding=5 cellspacing=5>
 +
<tr><td  width="800px" valign="middle">
 +
 
  
  
 
== Teste dein Wissen==
 
== Teste dein Wissen==
Um die folgenden Aufgaben lösen zu können , solltest du mit diesen Funktionen umgehen können: <br/>
+
Um die folgenden Aufgaben lösen zu können, solltest du mit diesen Funktionen umgehen können: <br/>
 
- Lineare Funktionen <br/>
 
- Lineare Funktionen <br/>
 
- Quadratische Funktionen <br/>  
 
- Quadratische Funktionen <br/>  
Zeile 23: Zeile 25:
 
{| class="wikitable center"
 
{| class="wikitable center"
 
|-  
 
|-  
| [[Datei:E1010.png|thumb]] || [[Datei:D1010.png|thumb]] || [[Datei:A.png|thumb]] || [[Datei:F1010.png|thumb]] || [[Datei:C1010.png|thumb]] || [[Datei:H1010.png|thumb]] ||  [[Datei:B1010.png|thumb]]  
+
| [[Datei:E1010.png|100px]] || [[Datei:D1010.png| 100px]] || [[Datei:A.png| 100px]] || [[Datei:F1010.png| 100px]] || [[Datei:C1010.png| 100px]] || [[Datei:H1010.png| 100px]] ||  [[Datei:B1010.png| 100px]]  
 
|-
 
|-
 
|<strong><math>y=0,5x+1</math></strong> || <strong><math>y=0,5x^2+1</math></strong>||  <strong><math>y=x^3+1</math></strong> || <strong><math>y=\frac {1}{x^2-4}-2</math></strong> || <strong><math>y=-0,2x^4+0,5x^2</math></strong>|| <strong><math>y=2^x-0,5</math></strong> ||  <strong><math>y=0,5sinx+1</math></strong>
 
|<strong><math>y=0,5x+1</math></strong> || <strong><math>y=0,5x^2+1</math></strong>||  <strong><math>y=x^3+1</math></strong> || <strong><math>y=\frac {1}{x^2-4}-2</math></strong> || <strong><math>y=-0,2x^4+0,5x^2</math></strong>|| <strong><math>y=2^x-0,5</math></strong> ||  <strong><math>y=0,5sinx+1</math></strong>
Zeile 63: Zeile 65:
 
(!G<sub>f</sub> hat keinen Schnittpunkt mit der x-Achse)
 
(!G<sub>f</sub> hat keinen Schnittpunkt mit der x-Achse)
 
(!G<sub>f</sub> ist punktsymmetrisch bzgl des Ursprungs)
 
(!G<sub>f</sub> ist punktsymmetrisch bzgl des Ursprungs)
(G<sub>f</sub> ist achsensymmetrisch bzgl des y-Achse)
+
(G<sub>f</sub> ist achsensymmetrisch bzgl der y-Achse)
 
(!G<sub>f</sub> ist nicht symmetrisch)
 
(!G<sub>f</sub> ist nicht symmetrisch)
 
(!Der Grenzwert für x gegen unendlich ist 0)
 
(!Der Grenzwert für x gegen unendlich ist 0)
(Der Grenzwert für x gegen unendlich ist unendlich)
+
(!Der Grenzwert für x gegen unendlich ist unendlich)
(!Der Grenzwert für x gegen minus unendlich ist minus unendlich)
+
(Der Grenzwert für x gegen minus unendlich ist minus unendlich)
 
</div>
 
</div>
  
Zeile 74: Zeile 76:
 
'''5) Gib das Verhalten der folgenden Funktionen für <math> x \rightarrow \infty \, und \, x \rightarrow  \infty </math> an.''' <br/>
 
'''5) Gib das Verhalten der folgenden Funktionen für <math> x \rightarrow \infty \, und \, x \rightarrow  \infty </math> an.''' <br/>
 
Gib den Grenzwert als Dezimalzahl an oder verwende "u" für <math> \infty  </math> und "-u" für <math>  - \infty  </math>. <br/>
 
Gib den Grenzwert als Dezimalzahl an oder verwende "u" für <math> \infty  </math> und "-u" für <math>  - \infty  </math>. <br/>
Schreibe "Null" für "0" <br/>
+
Schreibe das Wort "Null" für "0" <br/>
 
<quiz display="simple">
 
<quiz display="simple">
 
{  
 
{  
 
| type="{}" }
 
| type="{}" }
<math>f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to \infty}f(x)= </math> { 0,6 }
+
<math>f(x)=\frac 1 x + \frac 6 3 \qquad \lim_{x \to \infty}f(x)= </math> { 2 }
<math>f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to -\infty}f(x)= </math> { 0,6 }
+
<math>f(x)=\frac 1 x + \frac 6 3 \qquad \lim_{x \to -\infty}f(x)= </math> { 2 }
 
+
<br/>
<math>f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to \infty}f(x)= </math> { u }
+
<math>f(x)=\frac {6x^5+4x^2} {x^2+3x^4} \qquad \lim_{x \to \infty}f(x)= </math> { u }
<math>f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to -\infty}f(x)= </math> { -u }
+
<math>f(x)=\frac {6x^5+4x^2} {x^2+3x^4} \qquad \lim_{x \to -\infty}f(x)= </math> { -u }
 
+
<br/>
<math>f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to \infty}f(x)= </math> { -0,6 }
+
<math>f(x)=\frac {3x^2-x+6x^5} {3x^5+x+1} \qquad \lim_{x \to \infty}f(x)= </math> { 2 }
<math>f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to -\infty}f(x)= </math> { -0,6 }
+
<math>f(x)=\frac {3x^2-x+6x^5} {3x^5+x+1} \qquad \lim_{x \to -\infty}f(x)= </math> { 2 }
 
+
<br/>
 
<math>f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to \infty}f(x)= </math> { u }
 
<math>f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to \infty}f(x)= </math> { u }
 
<math>f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to -\infty}f(x)= </math> { -u }
 
<math>f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to -\infty}f(x)= </math> { -u }
 
+
<br/>
 
<math>f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to \infty}f(x)= </math> { Null }
 
<math>f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to \infty}f(x)= </math> { Null }
 
<math>f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to -\infty}f(x)= </math> { u }
 
<math>f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to -\infty}f(x)= </math> { u }
  
 
</quiz>
 
</quiz>
 +
 +
== Knicktests ==
 +
<br />
 +
{| class="wikitable center"
 +
|-
 +
| [[Datei:3 AB1 LineareFunktionen.pdf|thumb|Knicktest - Lineare Funktionen|200px]] || [[Datei:3 AB2 QuadratischeFunktionen.pdf|thumb|Knicktest - Quadratische Funktionen|200px]]
 +
|| [[Datei:3 AB3 Potenz GanzrationaleFunktionen.pdf|thumb|Knicktest - Potenzfunktionen/Ganzrationale Funktionen|200px]]
 +
|-
 +
| [[Datei:3 AB4 GebrochenRationaleFunktionen.pdf|thumb|Knicktest - Gebrochenrationale Funktionen|200px]] || [[Datei:3 AB5 Exponentialfunktion.pdf|thumb|Knicktest - Exponentialfunktionen|200px]] || [[Datei:3 AB6 TrigonometrischeFunktionenWiki.pdf|thumb|Knicktest - Trigonometrische Funktionen|200px]]
 +
|-
 +
| [[Datei:3 AB7 Gemischt.pdf|thumb|Knicktest - Funktionen gemischt 1|200px]] || [[Datei:3 AB8 Gemischt.pdf|thumb|Knicktest - Funktionen gemischt 2|200px]]
 +
|}
  
 
[[Mathematik_Grundwissen_10|Zurück zur Übersicht]]
 
[[Mathematik_Grundwissen_10|Zurück zur Übersicht]]
 +
</td></tr></table></center>
 +
 +
 +
 +
</div>

Aktuelle Version vom 12. September 2014, 15:49 Uhr




Teste dein Wissen

Um die folgenden Aufgaben lösen zu können, solltest du mit diesen Funktionen umgehen können:
- Lineare Funktionen
- Quadratische Funktionen
- Potenzfunktionen/Ganzrationale Funktionen (höheren Grades)
- Gebrochen-Rationale Funktionen
- Exponentialfunktionen
- Trigonometrische Funktionen
In den Übungen werden die verschiedenen Funktionstypen gemischt.

1) Ordne jedem der Funktionsgraphen die Funktionsgleichung (oben) und den Funktionstyp (unten) passend zu.

E1010.png D1010.png A.png F1010.png C1010.png H1010.png B1010.png
y=0,5x+1 y=0,5x^2+1 y=x^3+1 y=\frac {1}{x^2-4}-2 y=-0,2x^4+0,5x^2 y=2^x-0,5 y=0,5sinx+1
Lineare Funktion Quadratische Funktion Ganzrationale Funktion Gebrochen-rationale Funktion Ganzrationale Funktion Exponentialfunktion Trigonometrische Funktion


2) Entscheide, ob P(3/-6) auf dem Graphen der Funktion f(x)=3x^2-4x-9 liegt. (Nein, P liegt unterhalb von Gf) (!Nein, P liegt oberhalb von Gf) (!Ja, P liegt auf Gf)

3) Gib den Funktionsterm einer Geraden durch P(1/5) an, die parallel zur Geraden g: y=2x+4 verläuft.

1.

p(x)=

Punkte: 0 / 0


4) Kreuze für f(x)= -2x^2+2 die richtige Aussage an:
Versuche die Aufgabe durch Überlegen zu lösen; es sind keine Berechnungen nötig (!Gf ist weiter als die Normalparabel)
(Gf ist enger als die Normalparabel) (!Gf hat die Form einer Normalparabel) (Gf hat zwei Schnittpunkte mit der x-Achse) (!Gf hat einen Schnittpunkt mit der x-Achse) (!Gf hat keinen Schnittpunkt mit der x-Achse) (!Gf ist punktsymmetrisch bzgl des Ursprungs) (Gf ist achsensymmetrisch bzgl der y-Achse) (!Gf ist nicht symmetrisch) (!Der Grenzwert für x gegen unendlich ist 0) (!Der Grenzwert für x gegen unendlich ist unendlich) (Der Grenzwert für x gegen minus unendlich ist minus unendlich)


5) Gib das Verhalten der folgenden Funktionen für  x \rightarrow \infty \, und \, x \rightarrow  \infty an.
Gib den Grenzwert als Dezimalzahl an oder verwende "u" für  \infty  und "-u" für   - \infty  .
Schreibe das Wort "Null" für "0"

1.

f(x)=\frac 1 x + \frac 6 3 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 1 x + \frac 6 3 \qquad \lim_{x \to -\infty}f(x)=

f(x)=\frac {6x^5+4x^2} {x^2+3x^4} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {6x^5+4x^2} {x^2+3x^4} \qquad \lim_{x \to -\infty}f(x)=

f(x)=\frac {3x^2-x+6x^5} {3x^5+x+1} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^2-x+6x^5} {3x^5+x+1} \qquad \lim_{x \to -\infty}f(x)=

f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 3 5 x^3 + \frac 3 5 x^2 \qquad \lim_{x \to -\infty}f(x)=

f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to \infty}f(x)=
f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to -\infty}f(x)=

Punkte: 0 / 0


Knicktests


Knicktest - Lineare Funktionen
Knicktest - Quadratische Funktionen
 
Knicktest - Potenzfunktionen/Ganzrationale Funktionen
 
Knicktest - Gebrochenrationale Funktionen
 
Knicktest - Exponentialfunktionen
 
Knicktest - Trigonometrische Funktionen
Knicktest - Funktionen gemischt 1
 
 
Knicktest - Funktionen gemischt 2

Zurück zur Übersicht