Stochastik: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
  
 
{|
 
{|
|width="60%"|
+
|width="70%"|
  
 
== Teste dein Wissen==
 
== Teste dein Wissen==
Zeile 27: Zeile 27:
  
 
</popup> <br />
 
</popup> <br />
 +
|width="5%"|
 +
|valign="top"|
 +
== Knicktests ==
 +
[[Datei:4 AB1.pdf|thumb|Knicktest - Laplace-Experimente & Mehrstufige Zufallsexperimente (Pfadregeln)]]
 +
|}
 +
 +
{|
 +
|width="70%"|
  
 
'''2) Nebenstehende Vierfeldertafel gehört zu einem zweistufigen Zufallsexperiment mit den zwei Ereignissen A und B. <br/>
 
'''2) Nebenstehende Vierfeldertafel gehört zu einem zweistufigen Zufallsexperiment mit den zwei Ereignissen A und B. <br/>
Zeile 73: Zeile 81:
 
<math> P_B (\overline{A}) =  \frac {P(\overline{A} \cap B)} {P(B)} = \frac {0,4} {0,55} \approx 0,73 </math>
 
<math> P_B (\overline{A}) =  \frac {P(\overline{A} \cap B)} {P(B)} = \frac {0,4} {0,55} \approx 0,73 </math>
 
</popup>
 
</popup>
 +
 +
|width="5%"|
 +
|valign="top"|
 +
<br/>
 +
<br/>
 +
[[Datei:4 AB2.pdf|thumb|Knicktest - Mehrstufige Zufallsexperimente (Baumdiagramm, Vierfeldertafel, Bedingte Wahrscheinlichkeit)]]
 +
|}
 +
 +
 +
[[Mathematik_Grundwissen_10|Zurück zur Übersicht]]
 +
 +
</td></tr></table></center>
 +
</div>

Version vom 11. September 2014, 12:54 Uhr


Teste dein Wissen

1) In einem Eimer liegen 15 rote, und 10 gelbe Tulpenzwiebeln. Diese sind von außen nicht unterscheidbar; später werden sie jedoch verschieden farbig blühen. Es werden nacheinander zwei Zwiebeln gezogen und in eine Reihe gesteckt.
a) Ordne dieser Sachsituation ein Baumdiagramm zu. Begründe deine Entscheidung.

Baumdiagramm 1
Baumdiagramm 2

(! Baumdiagramm 1) (Baumdiagramm 2)


b) Peter berechnet, dass die Wahrscheinlichkeit für zwei gleichfarbige Blumen 50% beträgt. Beschreibe in Worten ein richtiges Vorgehen, um auf den Wert zu gelangen.


Knicktests

Knicktest - Laplace-Experimente & Mehrstufige Zufallsexperimente (Pfadregeln)

2) Nebenstehende Vierfeldertafel gehört zu einem zweistufigen Zufallsexperiment mit den zwei Ereignissen A und B.
a) Fülle die Vierfeldertafel vollständig aus.

A  \overline{A}
B 0,15 0,4
 \overline{B}
0,2


b) Mit welcher Wahrscheinlichkeit tritt das Ereignis
i) B ein

ii) A  \cap B ein

iii) A \cup B ein

iv)  \overline{A} ein, wenn bekannt ist, dass B bereits eingetreten ist.



Knicktest - Mehrstufige Zufallsexperimente (Baumdiagramm, Vierfeldertafel, Bedingte Wahrscheinlichkeit)


Zurück zur Übersicht