2010 IV: Unterschied zwischen den Versionen
(2 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 195: | Zeile 195: | ||
<tr> | <tr> | ||
<td> p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | <td> p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | ||
− | <td>A<sub>1</sub> {0,...,k}</td> | + | <td>A<sub>1</sub> = {0,...,k}</td> |
<td> <math> P_{\frac {1}{5}}^{25} (x \ge k+1) </math></td> | <td> <math> P_{\frac {1}{5}}^{25} (x \ge k+1) </math></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | <td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | ||
− | <td>A<sub>2</sub> {k+1,...,25}</td> | + | <td>A<sub>2</sub> = {k+1,...,25}</td> |
<td><math> P_{\frac {1}{3}}^{25} (x \le k) </math></td> | <td><math> P_{\frac {1}{3}}^{25} (x \le k) </math></td> | ||
</tr> | </tr> | ||
Zeile 215: | Zeile 215: | ||
k = 7: 0,89088 + 0,37026 = 1,26114 <br> | k = 7: 0,89088 + 0,37026 = 1,26114 <br> | ||
<br> | <br> | ||
− | + | Es wird deutlich, dass für k = 6 die beiden Fehlerwahrscheinlichkeiten am nähesten beieinander liegen. Deshalb folgt die Entscheidungsregel: | |
+ | <div style="blue:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; "> Man entscheidet sich bei höchstens 6 gelben Steinen für p<sub>A</sub>.</div><br><br> | ||
<table border="0" cellpadding="5" style="text-align:center; color:black;margin:auto;font-size:12px; border:1px solid balck;"> | <table border="0" cellpadding="5" style="text-align:center; color:black;margin:auto;font-size:12px; border:1px solid balck;"> | ||
<tr> | <tr> | ||
Zeile 227: | Zeile 228: | ||
<tr> | <tr> | ||
<td>p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | <td>p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | ||
− | <td>A<sub>1</sub> {0,...,6}</td> | + | <td>A<sub>1</sub> = {0,...,6}</td> |
<td><math> P_{\frac {1}{5}}^{25} (x \ge 7) </math></td> | <td><math> P_{\frac {1}{5}}^{25} (x \ge 7) </math></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | <td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | ||
− | <td>A<sub>2</sub> {7,...,25}</td> | + | <td>A<sub>2</sub> = {7,...,25}</td> |
<td> <math> P_{\frac {1}{3}}^{25} (x \le 6) </math></td> | <td> <math> P_{\frac {1}{3}}^{25} (x \le 6) </math></td> | ||
</tr> | </tr> | ||
Zeile 241: | Zeile 242: | ||
</table> | </table> | ||
<br> | <br> | ||
− | Die Fehlerwahrscheinlichkeiten lauten also: <br><br> | + | <div style="blue:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; "> Die Fehlerwahrscheinlichkeiten lauten also: <br><br> |
<math> P_{\frac {1}{5}}^{25} (x \ge 7) = 1 - P_{\frac {1}{5}}^{25} (x \le 6) = 1 - 0{,}78004 = 0,21996 </math><br> | <math> P_{\frac {1}{5}}^{25} (x \ge 7) = 1 - P_{\frac {1}{5}}^{25} (x \le 6) = 1 - 0{,}78004 = 0,21996 </math><br> | ||
− | <math> P_{\frac {1}{3}}^{25} (x \le 6) = 0,22154 </math> | + | <math> P_{\frac {1}{3}}^{25} (x \le 6) = 0,22154 </math></div> |
<br> | <br> | ||
}} | }} | ||
Zeile 253: | Zeile 254: | ||
hinsichtlich einer Entscheidung für Typ B hat. (3 BE) | hinsichtlich einer Entscheidung für Typ B hat. (3 BE) | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | <u>Antwort:</u> Wenn man die die Wahrscheinlichkeit, sich fälschlicherweise für Typ A zu entscheiden, verringern will, so muss der Annahmebereich A<sub>1</sub> kleiner werden. Also k < 6. | + | <div style="blue:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; "> <u>Antwort:</u> Wenn man die die Wahrscheinlichkeit, sich fälschlicherweise für Typ A zu entscheiden, verringern will, so muss der Annahmebereich A<sub>1</sub> kleiner werden. Also k < 6.</div> |
So folgt z.B. für k = 4:<br><br> | So folgt z.B. für k = 4:<br><br> | ||
Zeile 264: | Zeile 265: | ||
<tr> | <tr> | ||
<td> p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | <td> p<sub>A</sub> = <math> \textstyle \frac {1}{5}</math></td> | ||
− | <td>A<sub>1</sub> {0,...,4}</td> | + | <td>A<sub>1</sub> = {0,...,4}</td> |
<td> <math> P_{\frac {1}{5}}^{25} (x \ge 5) </math></td> | <td> <math> P_{\frac {1}{5}}^{25} (x \ge 5) </math></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | <td>p<sub>B</sub> = <math> \textstyle \frac {1}{3}</math></td> | ||
− | <td>A<sub>2</sub> {5,...,25}</td> | + | <td>A<sub>2</sub> = {5,...,25}</td> |
<td><math> P_{\frac {1}{3}}^{25} (x \le 4) </math></td> | <td><math> P_{\frac {1}{3}}^{25} (x \le 4) </math></td> | ||
</tr> | </tr> | ||
Zeile 275: | Zeile 276: | ||
</table> | </table> | ||
− | <br><u>Antwort:</u> Die Konsequenz davon ist, dass die Wahrscheinlichkeit sich fälschlicherweise für Typ B zu entscheiden steigt. | + | <br><div style="blue:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; "> <u>Antwort:</u> Die Konsequenz davon ist, dass die Wahrscheinlichkeit sich fälschlicherweise für Typ B zu entscheiden steigt.</div> |
Zeile 304: | Zeile 305: | ||
3 Steine verteilt auf 8 Plätze ergeeben: <math> {8 \choose 3} </math> Möglichkeiten.<br><br> | 3 Steine verteilt auf 8 Plätze ergeeben: <math> {8 \choose 3} </math> Möglichkeiten.<br><br> | ||
Nun bleiben für die blauen Steine noch 10-3 = 7 Plätze <br><br> | Nun bleiben für die blauen Steine noch 10-3 = 7 Plätze <br><br> | ||
− | Man verteilt also die 4 auf die restlichen 7 Plätze was <math> {7 \choose 4} </math> | + | Man verteilt also die 4 auf die restlichen 7 Plätze was <math> {7 \choose 4} </math> Möglichkeiten ergibt.<br><br> |
Nun bleiben nurnoch 3 Plätze für gelb übrig:<br><br> | Nun bleiben nurnoch 3 Plätze für gelb übrig:<br><br> | ||
Da die Steine nicht unterscheidbar sind gibt es nur eine Möglichkeit. <math> {3 \choose 3} </math><br><br> | Da die Steine nicht unterscheidbar sind gibt es nur eine Möglichkeit. <math> {3 \choose 3} </math><br><br> |
Aktuelle Version vom 1. März 2011, 00:17 Uhr
|
Es gibt zwei Typen A und B von Jumbo-Verkaufspackungen, die jeweils
gut gemischt Tausende von Bausteinen enthalten; diese unterscheiden sich
nur in ihrer Farbe. Bei Typ A ist jeder fünfte, bei Typ B jeder dritte Baustein
gelb. a) Geben Sie die Entscheidungsregel an, bei der die beiden Wahrscheinlichkeiten, sich irrtümlich für einen falschen Typ zu entscheiden, möglichst nahe beieinander liegen. Wie groß sind in diesem Fall die beiden Irrtumswahrscheinlichkeiten? (5 BE) b) Wie muss die Entscheidungsregel aus Teilaufgabe 2a bei gleichbleibendem Stichprobenumfang geändert werden, wenn man die Wahrscheinlichkeit, sich irrtümlich für Typ A zu entscheiden, verringern will? Nennen Sie eine Konsequenz, die diese Änderung hinsichtlich einer Entscheidung für Typ B hat. (3 BE) |
Lars’ kleine Schwester spielt mit 3 roten, 4 blauen und 3 gelben würfelförmigen
Bausteinen, die sich nur in ihrer Farbe unterscheiden. a) Sie baut einen Turm, indem sie alle Steine aufeinandersetzt. Wie viele
verschiedene Farbmuster sind bei diesem Turm möglich, wenn weder
der oberste noch der unterste Stein rot sein sollen? (4 BE) b) Nun baut sie aus den 10 Steinen eine „Treppe“ (siehe Abbildung). Wie viele verschiedene Farbmuster sind für die aus 10 Quadraten bestehende Stirnseite der „Treppe“ möglich, wenn in jeder waagrechten Reihe ein blauer Stein sitzen soll? (4 BE) |