Übungsaufgaben: Unterschied zwischen den Versionen
Aus RMG-Wiki
(→Übungsaufgaben) |
|||
(10 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 12: | Zeile 12: | ||
[[Bild:Aufgabe6.6.2neu.png|400px]] <br /> | [[Bild:Aufgabe6.6.2neu.png|400px]] <br /> | ||
Verschiebung um 1 Einheit in positiver y-Richtung | Verschiebung um 1 Einheit in positiver y-Richtung | ||
− | Diese Funktion dient nun als Ausgangsfunktion für die nächste Funktion <br /> | + | Diese Funktion dient nun als Ausgangsfunktion für die nächste Funktion. <br /> |
a) <br /> <br /> <br /> | a) <br /> <br /> <br /> | ||
[[Bild:Aufgabe6.6.3neu.png|400px]] <br /> | [[Bild:Aufgabe6.6.3neu.png|400px]] <br /> | ||
Zeile 26: | Zeile 26: | ||
</popup> | </popup> | ||
<popup name="Lösung und nächster Graph"> | <popup name="Lösung und nächster Graph"> | ||
− | Lösung: f(x)=2(x+2)<sup>2</sup>-1 <math>\rightarrow</math> Verschiebung um 2 Einheiten nach unten und Streckung um 4 in y-Richtung <br /> | + | Lösung: f(x)=2(x+2)<sup>2</sup>-1 <math>\rightarrow</math> Verschiebung um 2 Einheiten nach unten und Streckung um 4 Einheiten in y-Richtung <br /> |
d) <br /> <br /> <br /> | d) <br /> <br /> <br /> | ||
[[Bild:Aufgabe6.6.6neu.png|400px]] <br /> | [[Bild:Aufgabe6.6.6neu.png|400px]] <br /> | ||
Zeile 54: | Zeile 54: | ||
:Ausprobieren: f(-2)=0 <math>\rightarrow</math> x<sub>2</sub>=-2 <br /> | :Ausprobieren: f(-2)=0 <math>\rightarrow</math> x<sub>2</sub>=-2 <br /> | ||
− | :Polynomdivision: (x<sup>3</sup>+2x<sup>2</sup>-3x-6)÷(x+2)=x<sup>2</sup>-3 <math>\rightarrow</math> | + | :Polynomdivision: (x<sup>3</sup>+2x<sup>2</sup>-3x-6)÷(x+2)=x<sup>2</sup>-3 <math>\rightarrow</math> <math>x_3=\pm \sqrt 3</math> <br /> |
− | c)<br /> <math>\lim_{x\to\infty} f(x)=\lim_{x\to\infty} | + | c)<br /> <math>\lim_{x\to\infty} f(x)=\lim_{x\to\infty}4x^6+8x^5-12x^4-24x^3=\lim_{x\to\infty}4x^6(1+ \frac {2} {x}- \frac {3} {x^2}- \frac {6} {x^3})=\infty</math> <br /> |
− | <math>\lim_{x\to-\infty} f(x)=\lim_{x\to-\infty} | + | <math>\lim_{x\to-\infty} f(x)=\lim_{x\to-\infty}4x^6+8x^5-12x^4-24x^3=\lim_{x\to-\infty}4x^6(1+ \frac {2} {x}- \frac {3} {x^2}- \frac {6} {x^3})= \infty</math> |
</popup> | </popup> | ||
<br /> <br /> | <br /> <br /> | ||
Zeile 77: | Zeile 77: | ||
</div> | </div> | ||
+ | <br /> <br /> | ||
− | + | ||
− | + | ||
Zeile 108: | Zeile 108: | ||
|} | |} | ||
</div> <br /> <br /> <br /> <br /> <br /> | </div> <br /> <br /> <br /> <br /> <br /> | ||
− | + | <br /> <br /> | |
<span style="color: blue"> '''Aufgabe 5:''' </span> <br /> | <span style="color: blue"> '''Aufgabe 5:''' </span> <br /> | ||
− | Ordne den abgebildeten Graphen ihren Funktionsterm zu. Alle Funktionen sind aus der unten abgebildeten Funktion f(x)=x<sup>5</sup>-x<sup>3</sup>+1. <br /> <br /> | + | Ordne den abgebildeten Graphen ihren Funktionsterm zu. Alle Funktionen sind aus der unten abgebildeten Funktion f(x)=x<sup>5</sup>-x<sup>3</sup>+1 entstanden. <br /> <br /> |
− | [[Bild:Übungsaufgabe 6.5. | + | [[Bild:Übungsaufgabe 6.5.1neupng|300px]] |
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Zeile 119: | Zeile 119: | ||
{| | {| | ||
|- | |- | ||
− | | [[Bild:Übungsaufgabe 6.5. | + | | [[Bild:Übungsaufgabe 6.5.2neupng|250px]] || [[Bild:Übungsaufgabe 6.5.3neupng|250px]] || [[Bild:Übungsaufgabe 6.5.4neupng|250px]] || [[Bild:Übungsaufgabe 6.5.5neupng|250px]] || [[Bild:Übungsaufgabe 6.5.6neupng|250px]] |
|- | |- | ||
| <strong> x<sup>5</sup>-x<sup>3</sup>-1 </strong> || <strong> [x-2]<sup>5</sup>-[x-2]<sup>3</sup>+2 </strong> || <strong> 2x<sup>5</sup>-2x<sup>3</sup>-2 </strong> || <strong> -x<sup>5</sup>-x<sup>3</sup> </strong> || <strong> -2[x+1]<sup>5</sup>+2[x+1]<sup>3</sup>-2 </strong> | | <strong> x<sup>5</sup>-x<sup>3</sup>-1 </strong> || <strong> [x-2]<sup>5</sup>-[x-2]<sup>3</sup>+2 </strong> || <strong> 2x<sup>5</sup>-2x<sup>3</sup>-2 </strong> || <strong> -x<sup>5</sup>-x<sup>3</sup> </strong> || <strong> -2[x+1]<sup>5</sup>+2[x+1]<sup>3</sup>-2 </strong> | ||
Zeile 125: | Zeile 125: | ||
</div> | </div> | ||
+ | <br /> <br /> | ||
+ | |||
+ | |||
− | <span style="color: blue">'''Aufgabe 6:''' Abschlusstest</span> <br /> | + | <span style="color: blue">'''Aufgabe 6:''' '''Abschlusstest'''</span> <br /> |
Der folgende Multiple Choice Test ist die letzte Aufgabe des Lernpfades. Er deckt alle behandelten Themengebiete ab. Wenn du bei einigen Aufgaben nicht weiter weißt, kannst du deine Notizen zur Rate ziehen. Sollte auch das nicht helfen, solltest du dir die entsprechenden Kapitel noch einmal anschauen und deine Notizen eventuell überarbeiten. Wie immer können mehrere Antwortmöglichkeiten richtig sein. <br /> | Der folgende Multiple Choice Test ist die letzte Aufgabe des Lernpfades. Er deckt alle behandelten Themengebiete ab. Wenn du bei einigen Aufgaben nicht weiter weißt, kannst du deine Notizen zur Rate ziehen. Sollte auch das nicht helfen, solltest du dir die entsprechenden Kapitel noch einmal anschauen und deine Notizen eventuell überarbeiten. Wie immer können mehrere Antwortmöglichkeiten richtig sein. <br /> | ||
<div class="multiplechoice-quiz"> | <div class="multiplechoice-quiz"> | ||
Zeile 135: | Zeile 138: | ||
'''3. Der Zusammenhang g(x)=f(-x) entspricht''' (!Einer Achsensymmetrie zur y-Achse) (!Einer Spiegelung an der x-Achse) (!Einer Punktsymmetrie zum Ursprung) (Einer Spiegelung an der y-Achse) (!Einer Streckung in x-Richtung) | '''3. Der Zusammenhang g(x)=f(-x) entspricht''' (!Einer Achsensymmetrie zur y-Achse) (!Einer Spiegelung an der x-Achse) (!Einer Punktsymmetrie zum Ursprung) (Einer Spiegelung an der y-Achse) (!Einer Streckung in x-Richtung) | ||
− | '''4. Der abgebildete Graph der Funktion f(x)=x<sup>4</sup>-3x<sup>2</sup>+1 ist [[Bild: | + | '''4. Der abgebildete Graph der Funktion f(x)=x<sup>4</sup>-3x<sup>2</sup>+1 ist [[Bild: Abschlusstest2neu.png|300px]] ''' (!Punktsymmetrisch zum Ursprung) (Gerade) (Ganzrational) (!Quadratisch) (Achsensymmetrisch zur y-Achse) (!Ungerade) (Divergent) (!Konvergent) |
''' 5. Der Funktionsterm der Funktion g(x), die von f(x)=2x<sup>4</sup>-x<sup>3</sup> ausgehend um den Faktor 3 in y-Richtung getreckt und anschließend um 2 Einheiten nach oben verschoben wird, lautet''' (6x<sup>4</sup>-3x<sup>3</sup>+2) (!2[3x]<sup>4</sup>-[2x]<sup>3</sup>+2) (!6x<sup>4</sup>-3x<sup>3</sup>+6) (!5x<sup>4</sup>-3x<sup>3</sup>+1) (!6[x+2]<sup>4</sup>-3[x+2]<sup>3</sup>) (!6x<sup>4</sup>-3x<sup>3</sup>) | ''' 5. Der Funktionsterm der Funktion g(x), die von f(x)=2x<sup>4</sup>-x<sup>3</sup> ausgehend um den Faktor 3 in y-Richtung getreckt und anschließend um 2 Einheiten nach oben verschoben wird, lautet''' (6x<sup>4</sup>-3x<sup>3</sup>+2) (!2[3x]<sup>4</sup>-[2x]<sup>3</sup>+2) (!6x<sup>4</sup>-3x<sup>3</sup>+6) (!5x<sup>4</sup>-3x<sup>3</sup>+1) (!6[x+2]<sup>4</sup>-3[x+2]<sup>3</sup>) (!6x<sup>4</sup>-3x<sup>3</sup>) | ||
Zeile 143: | Zeile 146: | ||
'''7. Der Graph der Funktion f(x)=2x<sup>2</sup>+1 ist gegenüber dem Graphen g(x)=x<sup>2</sup>-1 ''' (!In y-Richtung Gestreckt und nach unten verschoben) (Nach oben verschoben ) (In y-Richtung gestreckt und in positiver y-Richtung verschoben ) (In y-Richtung gestreckt ) (!In negativer y-Richtung verschoben) (!Gar nicht verschoben) (!Gar nicht gestreckt) | '''7. Der Graph der Funktion f(x)=2x<sup>2</sup>+1 ist gegenüber dem Graphen g(x)=x<sup>2</sup>-1 ''' (!In y-Richtung Gestreckt und nach unten verschoben) (Nach oben verschoben ) (In y-Richtung gestreckt und in positiver y-Richtung verschoben ) (In y-Richtung gestreckt ) (!In negativer y-Richtung verschoben) (!Gar nicht verschoben) (!Gar nicht gestreckt) | ||
− | '''8. Was trifft auf diese Funktion zu? f(x)=sinx''' (Punktsymmetrie zum Ursprung) (Trigonometrisch) (!Linear) (!Graph: Parabel) (!Keine Nullstellen | + | '''8. Was trifft auf diese Funktion zu? f(x)=sinx''' (Punktsymmetrie zum Ursprung) (Trigonometrisch) (!Linear) (!Graph: Parabel) (!Keine Nullstellen) (!Achsensymmetrie zur y-Achse) (f[0]=0) |
'''9. Bei einer Streckung in x-Richtung ''' (!Verändert sich die Amplitude einer trigonometrischen Funktion) (Bleiben die Funktionswerte an der Stelle x=0 unverändert ) (!Bleiben die Nullstellen unverändert) (!Wird der Graph an der x-Achse gespiegelt) (Erfolgt die Streckung um den Faktor <math>{1 \over k}</math>) | '''9. Bei einer Streckung in x-Richtung ''' (!Verändert sich die Amplitude einer trigonometrischen Funktion) (Bleiben die Funktionswerte an der Stelle x=0 unverändert ) (!Bleiben die Nullstellen unverändert) (!Wird der Graph an der x-Achse gespiegelt) (Erfolgt die Streckung um den Faktor <math>{1 \over k}</math>) | ||
Zeile 149: | Zeile 152: | ||
'''10. Um einen Graphen an der y-Achse zu spiegeln''' (!Multipliziert man den Funktionsterm mit -1) (Setzt man für f[x] f[-x]ein ) (Schreibt man vor jedes x ein „Minus“ ) (!Verschiebt man den Graphen nach rechts oder links [je nach Lage]) | '''10. Um einen Graphen an der y-Achse zu spiegeln''' (!Multipliziert man den Funktionsterm mit -1) (Setzt man für f[x] f[-x]ein ) (Schreibt man vor jedes x ein „Minus“ ) (!Verschiebt man den Graphen nach rechts oder links [je nach Lage]) | ||
− | '''11. Um was für eine Funktion handelt es sich? [[Bild: | + | '''11. Um was für eine Funktion handelt es sich? [[Bild: Abschlusstest1neu.png|300px]] ''' (Exponentialfunktion) (!Lineare Funktion ) (!Trigonometrische Funktion) (!Gebrochen rationale Funktion) |
'''12. <math>\lim_{x\to\infty} {sinx \over x}=</math>''' (!Existiert nicht) (!Unendlich) (0)(!1) | '''12. <math>\lim_{x\to\infty} {sinx \over x}=</math>''' (!Existiert nicht) (!Unendlich) (0)(!1) | ||
Zeile 157: | Zeile 160: | ||
</div> | </div> | ||
− | + | <br /> <br /> | |
− | <span style="color: blue">'''Du hast es geschafft!'''</span> <br /> | + | <big> |
− | <span style="color: blue">'''Du hast den ganzen Lernpfad durchgearbeitet!'''</span> <br /> | + | :<span style="color: blue">'''Du hast es geschafft!'''</span> <br /> |
− | <span style="color: blue">'''Jetzt solltest du dich mit den Eigenschaften von Funktionen und ihrer Graphen auskennen.'''</span> <br /> <br /> | + | :<span style="color: blue">'''Du hast den ganzen Lernpfad durchgearbeitet!'''</span> <br /> |
+ | :<span style="color: blue">'''Jetzt solltest du dich mit den Eigenschaften von Funktionen und ihrer Graphen auskennen.''' </span> <br /> <br /> | ||
[[Facharbeit Florian Wilk|Zurück zur Übersicht]] | [[Facharbeit Florian Wilk|Zurück zur Übersicht]] |