Extremwerte: Unterschied zwischen den Versionen
K |
(Quelle auf Extremwertseite eingefügt) |
||
Zeile 4: | Zeile 4: | ||
{| | {| | ||
|width=400px| | |width=400px| | ||
− | '' | + | ''In der Mathematik ist ein Extremwert (oder Extremum; Plural: Extrema) der Überbegriff für lokales und globales Maximum und Minimum. Ein lokales Maximum ist der Wert der Funktion an einer Stelle, in deren Umgebung die Funktion keine größeren Werte annimmt.''<ref>[http://woerterbuch.babylon.com/Extremwert Definition eines Extremwertes]</ref> |
+ | |||
+ | ''Analog dazu ist ein lokas Minimum der Wert an einer Stelle, in deren Umgebung die Funktion keine kleineren Werte besitzt. An den Extremwerten besitzt der Graph eine waagrechte Tangente.'' | ||
+ | |||
:Um diese Extremwerte einer Funktion zu errechnen, wird die erste Ableitung benötigt.'' | :Um diese Extremwerte einer Funktion zu errechnen, wird die erste Ableitung benötigt.'' | ||
Zeile 10: | Zeile 13: | ||
{|width=90%| style="background-color:#F4F4F4; border: 1px solid #58B9FF; padding:0.1em" | {|width=90%| style="background-color:#F4F4F4; border: 1px solid #58B9FF; padding:0.1em" | ||
| valign="top" | | | valign="top" | | ||
− | :Die allgemeine Ableitungsregel ist: '''<math>f (x) = x^n \Rightarrow f'(x) = n * x</math><sup>n-1</sup>''' | + | :Die allgemeine Ableitungsregel ist: '''<math>f (x) = x^n \Rightarrow f'(x) = n * x</math><sup>n-1</sup>''' <ref>[http://www.integralgott.de/diffr/dregeleinf.htm Potenzregel zur Ableitung]</ref> |
|} | |} | ||
:<u>Tipp:</u> | :<u>Tipp:</u> | ||
− | :Zum | + | :Zum Nachlesen, wie du die Ableitung bilden kannst und was eine Ableitung ist, findest du [http://www.matheprisma.de/Module/Ableitung/index.htm hier] nochmal einen nützlichen Lernpfad. |
Zeile 29: | Zeile 32: | ||
:* Man setzt f '(t) = 0, | :* Man setzt f '(t) = 0, | ||
:* erhält eine quadratische Gleichung, | :* erhält eine quadratische Gleichung, | ||
− | :* löst diese mit der Lösungsformel für quadratische Gleichungen, | + | :* löst diese mit der Lösungsformel für quadratische Gleichungen <ref>[http://de.wikipedia.org/wiki/Quadratische_Gleichung#L.C3.B6sungsformeln Lösungsformel für quadratische Gleichungen]</ref>, |
:* und setzt die erhaltenen t - Werte in die Funktion ein und erhält somit die y - Koordinaten der möglichen Extremwerte E<sub>1</sub> und E<sub>2</sub>. | :* und setzt die erhaltenen t - Werte in die Funktion ein und erhält somit die y - Koordinaten der möglichen Extremwerte E<sub>1</sub> und E<sub>2</sub>. | ||
Zeile 61: | Zeile 64: | ||
::<math>\Rightarrow</math> relatives Minimum | ::<math>\Rightarrow</math> relatives Minimum | ||
− | ::Wäre die zweite Ableitung ''gleich Null'', handelt es sich bei dem Punkt um einen ''Terassenpunkt'', dass heißt, dass die Steigung der Funktion ''keinen Vorzeichenwechsel an dieser Stelle'' hat, aber jedoch eine waagrechte Tangente. Bei solche einem Punkt handelt es sich um '''keinen Extremwert'''. | + | ::Wäre die zweite Ableitung ''gleich Null'', handelt es sich bei dem Punkt um einen ''Terassenpunkt'', dass heißt, dass die Steigung der Funktion ''keinen Vorzeichenwechsel an dieser Stelle'' hat, aber jedoch eine waagrechte Tangente. Bei solche einem Punkt handelt es sich um '''keinen Extremwert'''. <ref>[http://www.learnable.net/freeload/mathe/M215.pdf Zur Bestimmung der Extremwerte]</ref> |
Zeile 103: | Zeile 106: | ||
::* da rechts von t = 2a der Graph steigt. | ::* da rechts von t = 2a der Graph steigt. | ||
::<math> \Rightarrow E_2\left( \frac{2}{3}a / \frac{8}{27}a^3 \right)</math> '''ist Maximum | ::<math> \Rightarrow E_2\left( \frac{2}{3}a / \frac{8}{27}a^3 \right)</math> '''ist Maximum | ||
− | ::* da links von | + | ::* da links von <math>t = \frac{2}{3}a</math> der Graph steigt. |
− | ::* da rechts von | + | ::* da rechts von <math>t =\frac{2}{3}a</math> der Graph fällt. |
}} | }} | ||
Zeile 138: | Zeile 141: | ||
:Monotonieverhalten des Graphen G<sub>f</sub> | :Monotonieverhalten des Graphen G<sub>f</sub> | ||
|} | |} | ||
+ | |||
+ | |||
+ | |||
<math>\Rightarrow</math> Über alle drei Lösungswege kommt man zu dem Schluss, dass <math>E_1 \left( 2a / 0 \right)</math> Minimum und <math>E_2 \left( \frac{2}{3}a / \frac{8}{27}a^3 \right)</math> Maximum ist. E<sub>2</sub> ist jedoch nur ein lokales Maximum, da für <math>t \rightarrow +\infty</math> die Funktionswerte gegen <math>+ \infty</math> gehen und somit größer werden, als der Funktionswert von E<sub>2</sub>. Das Minimum E<sub>1</sub> kann als absolutes Minimum angesehen werden, da es weniger als Null Liter Wasser nicht gibt. | <math>\Rightarrow</math> Über alle drei Lösungswege kommt man zu dem Schluss, dass <math>E_1 \left( 2a / 0 \right)</math> Minimum und <math>E_2 \left( \frac{2}{3}a / \frac{8}{27}a^3 \right)</math> Maximum ist. E<sub>2</sub> ist jedoch nur ein lokales Maximum, da für <math>t \rightarrow +\infty</math> die Funktionswerte gegen <math>+ \infty</math> gehen und somit größer werden, als der Funktionswert von E<sub>2</sub>. Das Minimum E<sub>1</sub> kann als absolutes Minimum angesehen werden, da es weniger als Null Liter Wasser nicht gibt. | ||
Zeile 146: | Zeile 152: | ||
[[Facharbeit Neutert|Hier geht's zurück zur Übersicht]] | [[Facharbeit Neutert|Hier geht's zurück zur Übersicht]] | ||
+ | |||
+ | |||
+ | |||
+ | ==Internetquellen== | ||
+ | <references/> |
Version vom 27. Januar 2010, 14:24 Uhr
Bestimmung der maximalen und minimalen Volumina
Es soll in Abhängigkeit von a ermittelt werden, zu welchen Zeitpunkten t ein relatives Maximum bzw. Minimum vorliegt. Diese Funktionswerte sollen berechnet werden.
In der Mathematik ist ein Extremwert (oder Extremum; Plural: Extrema) der Überbegriff für lokales und globales Maximum und Minimum. Ein lokales Maximum ist der Wert der Funktion an einer Stelle, in deren Umgebung die Funktion keine größeren Werte annimmt.[1] Analog dazu ist ein lokas Minimum der Wert an einer Stelle, in deren Umgebung die Funktion keine kleineren Werte besitzt. An den Extremwerten besitzt der Graph eine waagrechte Tangente.
|
Jeder Graph Ga besitzt zwei Extremwerte. In der Funktion f3 sind es die unten eingezeichneten Punkte. Man sieht deutlich, dass an der Stelle, an der die Ableitung (blaue Funktion) gleich Null wird, die Extremwerte und die waagrechten Tangenten liegen (rot eingezeichnet). |
Man hat nun die Werte in Abhängigkeit von a ermittelt, an denen die Funktion eine waagrechte Tangente besitzt. Um nun zu prüfen, ob es sich dabei um einen Extrempunkt handelt und welcher Art dieser Extremwert ist, kann man hier anhand verschiedener Lösungen vorgehen.
|
|
- Lösung 3: Vorzeichentabelle
|
|
Über alle drei Lösungswege kommt man zu dem Schluss, dass Minimum und Maximum ist. E2 ist jedoch nur ein lokales Maximum, da für die Funktionswerte gegen gehen und somit größer werden, als der Funktionswert von E2. Das Minimum E1 kann als absolutes Minimum angesehen werden, da es weniger als Null Liter Wasser nicht gibt.
Hier geht's zur Aufgabe: Bestimmung der größten Senkung der Durchflussgeschwindigkeit
Hier geht's zurück zur Übersicht