Extremwerte: Unterschied zwischen den Versionen
K |
K |
||
Zeile 129: | Zeile 129: | ||
:: | :: | ||
− | [[Bild:Vorzeichentabelle neu.jpg]] | + | [[Bild:Vorzeichentabelle neu.jpg|400px]] |
::<u><span style="color: red">'''Merke:'''</span></u> Durch das Aufstellen einer Vorzeichentabelle erhält man das Monotonieverhalten des Graphen und kann sich somit die Art der Extremwerte erschließen. | ::<u><span style="color: red">'''Merke:'''</span></u> Durch das Aufstellen einer Vorzeichentabelle erhält man das Monotonieverhalten des Graphen und kann sich somit die Art der Extremwerte erschließen. | ||
}} | }} | ||
Zeile 138: | Zeile 138: | ||
:Monotonieverhalten des Graphen G<sub>f</sub> | :Monotonieverhalten des Graphen G<sub>f</sub> | ||
|} | |} | ||
+ | |||
+ | <math>\Rightarrow</math> Über alle drei Lösungswege kommt man zu dem Schluss, dass <math>E_1 \left( 2a / 0 \right)</math> Minimum und <math>E_2 \left( \frac{2}{3}a / \frac{8}{27}a^3 \right)</math> Maximum ist. E<sub>2</sub> ist jedoch nur ein lokales Maximum, da für <math>t \rightarrow +\infty</math> die Funktionswerte gegen <math>+ \infty</math> gehen und somit größer werden, als der Funktionswert von E<sub>2</sub>. Das Minimum E<sub>1</sub> kann als absolutes Minimum angesehen werden, da es weniger als Null Liter Wasser nicht gibt. | ||
+ | |||
Version vom 25. Januar 2010, 23:04 Uhr
Bestimmung der maximalen und minimalen Volumina
Es soll in Abhängigkeit von a ermittelt werden, zu welchen Zeitpunkten t ein relatives Maximum bzw. Minimum vorliegt. Diese Funktionswerte sollen berechnet werden.
Maxima und Minima sind Punkte auf einem Graphen, die in ihrem im Umkreis die höchsten beziehungsweise tiefsten Punkte auf dem Graphen sind. An den Extrempunkten besitzt die Funktion eine waagrechte Tangente, dass heißt, die Steigung ist Null.
|
Jeder Graph Ga besitzt zwei Extremwerte. In der Funktion f3 sind es die unten eingezeichneten Punkte. Man sieht deutlich, dass an der Stelle, an der die Ableitung (blaue Funktion) gleich Null wird, die Extremwerte und die waagrechten Tangenten liegen (rot eingezeichnet). |
Man hat nun die Werte in Abhängigkeit von a ermittelt, an denen die Funktion eine waagrechte Tangente besitzt. Um nun zu prüfen, ob es sich dabei um einen Extrempunkt handelt und welcher Art dieser Extremwert ist, kann man hier anhand verschiedener Lösungen vorgehen.
|
|
- Lösung 3: Vorzeichentabelle
|
|
Über alle drei Lösungswege kommt man zu dem Schluss, dass Minimum und Maximum ist. E2 ist jedoch nur ein lokales Maximum, da für die Funktionswerte gegen gehen und somit größer werden, als der Funktionswert von E2. Das Minimum E1 kann als absolutes Minimum angesehen werden, da es weniger als Null Liter Wasser nicht gibt.
Hier geht's zur Aufgabe: Bestimmung der größten Senkung der Durchflussgeschwindigkeit