2008 VI: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Überschriften der 2 Lösungen der Aufgabe 1b)
K
 
(13 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 10: Zeile 10:
  
  
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=6765c5a90ce67dce2877992c3f4e2d9f '''Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern'''] - [[Media:LKM Abi 2008 VI lös.doc|Lösungen zum Ausdrucken]]</center>
+
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=6765c5a90ce67dce2877992c3f4e2d9f '''Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern'''] - [[Media:LKM Abi 2008 VI lös.doc|Lösungen zum Ausdrucken]]
 +
<br>
 +
Lösungen erstellt von: Sara Schirmer und Melissa Gehrig</center>
  
 
</td></tr></table></center>
 
</td></tr></table></center>
Zeile 28: Zeile 30:
 
[[Bild:ABI_2008_VI_Grafik_A1.jpg|center]]
 
[[Bild:ABI_2008_VI_Grafik_A1.jpg|center]]
  
a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.  
+
a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.<br />[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0] <div align="right">''5 BE''</div>
<br />[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0]
+
  
:{{Lösung versteckt|
+
:{{Lösung versteckt|1=
  
1.Lösung Ebene erstellen
+
1.Lösung  
  
 
[[Bild:ABI_2008_VI_1a_2Lös.jpg|500px]]
 
[[Bild:ABI_2008_VI_1a_2Lös.jpg|500px]]
  
2.Lösung Ebene erstellen
+
2.Lösung
  
 
[[Bild:ABI_2008_VI_1a_Lös.jpg|500px]]
 
[[Bild:ABI_2008_VI_1a_Lös.jpg|500px]]
 +
 +
<popup name="Bemerkung">
 +
Zu beweisen ist, dass P '''auf''' nicht innerhalb von k liegt. <br>Deswegen muss als Bedingung: <math>\vert \overrightarrow {MP} \vert = r </math> und nicht <math>\vert \overrightarrow {MP} \vert \le r </math> gelten.
 +
</popup><br />
 
}}
 
}}
  
  
b) Zeigen Sie, dass die Gerade g in der Ebene E liegt, und bestimmen Sie
+
b) Zeigen Sie, dass die Gerade g in der Ebene E liegt, und bestimmen Sie die Koordinaten der Schnittpunkte R und T von g und k. (Der Punkt mit positiver x1-Koordinate wird mit R bezeichnet.)<br />[Teilergebnis: R(8 | 0 | −7), T(−10 | 0 |11)] <div align="right">''7 BE''</div>
die Koordinaten der Schnittpunkte R und T von g und k. (Der Punkt
+
mit positiver x1-Koordinate wird mit R bezeichnet.)
+
<br />[Teilergebnis: R(8 | 0 | −7), T(−10 | 0 |11)]  
+
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
Zeile 63: Zeile 65:
  
  
c) Die Gerade g teilt den Grundkreis k in einen kurzen und einen langen Kreisbogen. Berechnen Sie den Winkel ϕ, den die Vektoren <math>\vec PR</math> und <math>\vec PT</math> einschließen, und geben Sie an, auf welchem der beiden Bögen der Punkt P liegt. Begründen Sie Ihre Antwort.
+
c) Die Gerade g teilt den Grundkreis k in einen kurzen und einen langen Kreisbogen. Berechnen Sie den Winkel ϕ, den die Vektoren <math>\vec PR</math> und <math>\vec PT</math> einschließen, und geben Sie an, auf welchem der beiden Bögen der Punkt P liegt. Begründen Sie Ihre Antwort. <div align="right">''6 BE''</div>
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
Zeile 80: Zeile 82:
 
;Aufgabe 2
 
;Aufgabe 2
  
a) Die Spiegelung der Geraden g an M ergibt die Gerade g'. Ermitteln Sie die Koordinaten der Schnittpunkte von g' mit k.
+
a) Die Spiegelung der Geraden g an M ergibt die Gerade g'. Ermitteln Sie die Koordinaten der Schnittpunkte von g' mit k.<br />[Teilergebnis: (−12 | 8 | 9) ] <div align="right">''4 BE''</div>
<br />[Teilergebnis: (−12 | 8 | 9) ]
+
  
 
<popup name="Tipp">
 
<popup name="Tipp">
Zeile 89: Zeile 90:
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
 +
 +
1. Lösung
 +
 
[[Bild:ABI_2008_VI_2a_Lös.jpg|500px]]
 
[[Bild:ABI_2008_VI_2a_Lös.jpg|500px]]
  
2. Lösung: Durch Spiegelung an M, T' und R' bestimmen und Gerade aufstellen
+
2. Lösung
[[Bild:ABI_2008_VI_2a_2Lös.jpg|500px]]
+
 
 +
[[Bild:ABI_2008_VI_2a_Lös2.jpg|500px]]
 
}}
 
}}
  
  
b) Begründen Sie ohne Rechnung, dass die Punkte, in denen die Geraden
+
b) Begründen Sie ohne Rechnung, dass die Punkte, in denen die Geraden g und g' den Kreis k schneiden, ein Rechteck bilden. <div align="right">''3 BE''</div>
g und g' den Kreis k schneiden, ein Rechteck bilden.
+
 
+
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
[[Bild:ABI_2008_VI_2b_Lös.jpg|750px]]
 
}}
 
  
 +
1. Lösung
 +
 +
[[Bild:ABI_2008_VI_2b_Lös.jpg|550px]]
 +
 +
Beweis:
 +
<math>\vert \overrightarrow {TM} \vert = \vert \overrightarrow {RM} \vert</math>
 +
<br><br>
 +
<math>\vert \overrightarrow {TM} \vert = \begin{vmatrix}\begin{pmatrix} 8 \\ 4 \\ -10 \end{pmatrix}\end{vmatrix} = \sqrt{180} {;}  \qquad \vert \overrightarrow {RM} \vert = \begin{vmatrix}\begin{pmatrix} -10 \\ 4 \\ 8 \end{pmatrix}\end{vmatrix} = \sqrt{180}</math>
 +
<br><br>
 +
<math>\Rightarrow \vert \overrightarrow {TM} \vert = \vert \overrightarrow {RM} \vert</math> q.e.d.
 +
<br><br>
 +
2. Lösung
 +
 +
[[Bild:ABI_2008_VI_2b_Lös2.jpg|550px]]
 +
}}
  
c) Das Rechteck aus Teilaufgabe 2b bestimmt zusammen mit dem Punkt
 
S eine Pyramide. Wie viel Prozent des Kegelvolumens füllt diese
 
Pyramide aus?
 
  
 +
c) Das Rechteck aus Teilaufgabe 2b bestimmt zusammen mit dem Punkt S eine Pyramide. Wie viel Prozent des Kegelvolumens füllt diese Pyramide aus? <div align="right">''7 BE''</div>
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
Zeile 125: Zeile 139:
 
;Aufgabe 3
 
;Aufgabe 3
  
Die Spitze S des Kegels wird geradlinig mit dem in der Ebene E liegenden
+
Die Spitze S des Kegels wird geradlinig mit dem in der Ebene E liegenden Punkt Q(2 | −20 | 9) verbunden. Auf der Strecke [SQ] bewegt sich der Mittelpunkt einer Kugel mit Radius 3 auf die Ebene E zu. Berechnen Sie die Koordinaten des Punktes B, in dem die Kugel die Ebene E berührt. <div align="right">''8 BE''</div>
Punkt Q(2 | −20 | 9) verbunden. Auf der Strecke [SQ] bewegt sich
+
der Mittelpunkt einer Kugel mit Radius 3 auf die Ebene E zu. Berechnen
+
Sie die Koordinaten des Punktes B, in dem die Kugel die Ebene E
+
berührt.
+
  
 
<popup name="Tipp">
 
<popup name="Tipp">
''Strahlensatz''
+
''Strahlensatz<br />oder HNF''
 
</popup>
 
</popup>
  
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
[[Bild:ABI_2008_VI_3_Lös.jpg|750px]]
+
 
 +
1. Lösung: Strahlensatz
 +
 
 +
[[Bild:ABI_2008_VI_3_Lös.jpg|550px]]
 +
 
 +
2. Lösung: HNF
 +
 
 +
[[Bild:ABI_2008_VI_3_Lös2.jpg|550px]]
 
}}
 
}}
  

Aktuelle Version vom 26. März 2010, 15:22 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2008
Geometrie VI


Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern - Lösungen zum Ausdrucken


Lösungen erstellt von: Sara Schirmer und Melissa Gehrig


Aufgabe 1

In einem kartesischen Koordinatensystem des IR3 sind die Punkte M(−2 | 4 |1), S(6 | 8 | 9), P(4 | −8 |1) sowie die Gerade g : \vec x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, λ ∈ IR gegeben. Die Strecke [MS] ist die Höhe eines geraden Kreiskegels. Sein Grundkreis k um den Punkt M hat den Radius 6\sqrt{5} und liegt in der Ebene E.

ABI 2008 VI Grafik A1.jpg
a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.
[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0]
5 BE

1.Lösung

ABI 2008 VI 1a 2Lös.jpg

2.Lösung

ABI 2008 VI 1a Lös.jpg



b) Zeigen Sie, dass die Gerade g in der Ebene E liegt, und bestimmen Sie die Koordinaten der Schnittpunkte R und T von g und k. (Der Punkt mit positiver x1-Koordinate wird mit R bezeichnet.)
[Teilergebnis: R(8 | 0 | −7), T(−10 | 0 |11)]
7 BE

ABI 2008 VI 1b Lös.jpg

Bestimmung der Schnittpunkte

1. Lösung: g in k

ABI 2008 VI 1 b Lös.jpg

2. Lösung: allgemeiner Geradenpunkt

ABI 2008 VI 1b Lös allgemeiner geradenpunkt.jpg


c) Die Gerade g teilt den Grundkreis k in einen kurzen und einen langen Kreisbogen. Berechnen Sie den Winkel ϕ, den die Vektoren \vec PR und \vec PT einschließen, und geben Sie an, auf welchem der beiden Bögen der Punkt P liegt. Begründen Sie Ihre Antwort.
6 BE

ABI 2008 VI 1c Lös.jpg



Aufgabe 2
a) Die Spiegelung der Geraden g an M ergibt die Gerade g'. Ermitteln Sie die Koordinaten der Schnittpunkte von g' mit k.
[Teilergebnis: (−12 | 8 | 9) ]
4 BE



1. Lösung

ABI 2008 VI 2a Lös.jpg

2. Lösung

ABI 2008 VI 2a Lös2.jpg


b) Begründen Sie ohne Rechnung, dass die Punkte, in denen die Geraden g und g' den Kreis k schneiden, ein Rechteck bilden.
3 BE


1. Lösung

ABI 2008 VI 2b Lös.jpg

Beweis: \vert \overrightarrow {TM} \vert = \vert \overrightarrow {RM} \vert

\vert \overrightarrow {TM} \vert = \begin{vmatrix}\begin{pmatrix} 8 \\ 4 \\ -10 \end{pmatrix}\end{vmatrix} = \sqrt{180} {;}  \qquad \vert \overrightarrow {RM} \vert = \begin{vmatrix}\begin{pmatrix} -10 \\ 4 \\ 8 \end{pmatrix}\end{vmatrix} = \sqrt{180}

\Rightarrow \vert \overrightarrow {TM} \vert = \vert \overrightarrow {RM} \vert q.e.d.

2. Lösung

ABI 2008 VI 2b Lös2.jpg


c) Das Rechteck aus Teilaufgabe 2b bestimmt zusammen mit dem Punkt S eine Pyramide. Wie viel Prozent des Kegelvolumens füllt diese Pyramide aus?
7 BE

ABI 2008 VI 2c Lös.jpg



Aufgabe 3
Die Spitze S des Kegels wird geradlinig mit dem in der Ebene E liegenden Punkt Q(2 | −20 | 9) verbunden. Auf der Strecke [SQ] bewegt sich der Mittelpunkt einer Kugel mit Radius 3 auf die Ebene E zu. Berechnen Sie die Koordinaten des Punktes B, in dem die Kugel die Ebene E berührt.
8 BE



1. Lösung: Strahlensatz

ABI 2008 VI 3 Lös.jpg

2. Lösung: HNF

550px