Lösung von Teilaufgabe b: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(3. Flächenberechnung, der sich nach rechts ins Unendliche erstreckenden Fläche, zwischen der x- Achse und der Funktion f2 im I. Quadranten)
(4. Der Graph von Fa ( x ))
Zeile 54: Zeile 54:
  
 
[[Bild:Integral.png|500px]]
 
[[Bild:Integral.png|500px]]
 
=== 4. '''Der Graph von F<sub>a</sub> ( x )''' ===
 
 
<ggb_applet width="671" height="418"  version="3.2" ggbBase64="UEsDBBQACAAIAJoUOjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZZj9s2EH5ufgWhp02DtUUdPgBrgyZFgQCbA3Cbhz6koKSxzS5FCiS1K+fXZ0hKtuwmbQoUfTA0nBnO8c1Bb172jSCPoA1XsojoLI4IyErVXO6LqLO721X08u7ZZg9qD6VmZKd0w2wRpbMkcvyO3z37YWMO6okw4VU+cngqoh0TBiJiWg2sNgcAe8FnXc8FZ/r4vvwTKmvOgmDkjWw79GJ1h7yqqe+5GY9z77AV3P7MH3kNmghVFdEix9CR+gja8oqJIsriwEmKKLkSIit10oPS/LOS1qmfje+QQ4jhnwERSQKvUtJ80Mq+VqJrpCGkUiI+BagEndDJhE5PmeEhmwjyUXBhXqGEdAbQjdJmVHfwvpfi+ArBfGgVl2fA8PZm7quwga4SvOZMOqQ9SJgBIU+8tgfEZ0kxX+D7AwKZ0cXoV+l6ezQWGtL/DlohVhl2QbpMl8s1pWmWrfOIHIOIrrNZTOkiy9PlOqOpExmEE3FKl7NFnKU5XSXrZLFKV3hpECV4KVmtUrrK0yxeL/LBNzxuwVpsNENYD6dk95rXJ9Dc4Y15pcSZ5fN/zVrbad+k6cDa2qPzhlXVLsmf5F7AwEsQ8QNUD6Xqt6GqaTD967H1V3w85d6jTrTrF8xsP3zL8PU6LtCTVux1Yq8x2HBGT3K6TryG/5bh67UElyG0IXE6Zk3j0Q03xDHiUPwRG8FKwFaNSCe5vR8P2NIPQ6Y06L/rmhJO/XNpkv5HJjfzq4bbPICWIIZ2xsJ2qjPk0c3WpNNrqHiDxyAYAGGuWL9hAIFbw17DGHdYCAEuL42nrXvF3szHIPxIYayVxc2G+ViXi1s8FofeUTWzjuMGR0ADOPLWd4PsGtC8OiHDIucNXXSjo9kQgd96yi+wKzTPsKP4G/2Cq649MGeODl3BjrjMpil6a29VPTge9IzwW6/huLBvc7exG9YXkadYaXBBWdhWCKC8VxWzfrGH6IZVQGOXAundEnTEES97Ysd7OA/a15fjuXftAZtEgjF+wOx0lJjEGnvgcbO0IUd8C8BZ92/MqE1azNqP8WSdDfX4x8rAdWWS2RL3z8r9snwdZ/lX6jQk938UysMZOJM5HF++S8FF1j2+msa9yGOYv/zB8F3uW0/d9M9JQW7h0w0jL0gyi8ktQdaP5KZHyvEQ4ucRmf8FwF0n/ThEU7vfLGp6VdR/2+7jEg045nQCZPydQMZ/03OX4U3xm09H37+Pw7+Xuy9QSwcI+gNsBZ4DAADvCAAAUEsBAhQAFAAIAAgAmhQ6PPoDbAWeAwAA7wgAAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAADYAwAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 

Version vom 26. Januar 2010, 19:39 Uhr

1. Eigenschaften einer Stammfunktion von fa

1.) Von -\infty < x < a verläuft der Graph Gfa unterhalb der x-Achse und ist somit negative. Daraus kann man schließen, das der Graph GFa in diesem Intervall streng monoton fallend ist.
Von a < x < \infty verläuft der Graph Gfa oberhalb der x-Achse und ist somit positive. Daraus kann man schließen, dass der Graph GFa in diesem Intervall streng monoton steigend ist.

2.) Bei x = a\, ist der Graph Gfa gleich Null ( Gfa = 0 )und das Steiguungsverhalten von GFa ändert für x < a und x > a das Vorzeichen. Deshalb kann man sagen, dass der Graph GFa an der Stell x = a einen Extrempunkt, in diesem Fall einen Tiefpunkt ( Minimum ) hat, da sich das Monotonieverhalten von streng monoton fallend in streng monoton steigend verändert.

2. Bestimmung einer Stammfunktion von fa durch partielle Integration

Hilfe zur partiellen Integration

 \int_a^b f(x)\cdot g'(x)\,\mathrm{d}x 
= [f(x)\cdot g(x)]_{a}^{b} - \int_a^b f'(x)\cdot g(x)\,\mathrm{d}x.


 \int_{a}^{b} f_a ( x )\,dx  = ( x - a ) e^{a + 2 - x}

Definiere:

u ( x ) = x - a
u ^{'} ( x ) = 1

v ( x ) = e^{a + 2 - x}
v ^{'} ( x ) = -e^{a + 2 - x}

 \int_{a}^{b} f_a ( x )\,dx  = ( x - a )\cdot e^{a + 2 - x}

=[( x - a )\cdot (-e^{a + 2 - x}) ]^{b}_{a} - \int_{a}^{b} 1 \cdot (-e^{a + 2 - x})\,dx
=[( x - a )\cdot (-e^{a + 2 - x}) - e^{a + 2 - x}]^{b}_{a}
=[-e^{a + 2 - x}\cdot ( x - a + 1 )]^{b}_{a}
\Rightarrow  F_a( x ) = -e^{a + 2 - x} ( x - a + 1 ) + c

für Interessierte: Der Holzweg


3. Flächenberechnung, der sich nach rechts ins Unendliche erstreckenden Fläche, zwischen der x- Achse und der Funktion f2 im I. Quadranten

Hinweis: \lim_{x\to\infty}x\cdot e^{-x} = 0

Da die Nullstelle der Funktion fa bei x = a liegt, folgt daraus, dass die Nullstelle der Funktion f2 bei x = 2 liegt. Das heißt, man muss von zwei bis unendlich integrieren.

\int_{2}^{b} f_a( x ) = [-e^{2 + 2 - x}\cdot ( x - 2 + 1 )]^{b}_{2}

 = [-e^{4 - x}\cdot ( x - 1 )]^{b}_{2}
 = \lim_{b\to\infty} [-e^{4 - b}\cdot ( b - 1 )] - [-e^{4 - 2}\cdot ( 2 - 1 )]
 = \lim_{b\to\infty} [-e^{4 - b}\cdot ( b - 1 )] - [-e^{2}\cdot ( 1 )]
  | \lim_{b\to\infty} [-e^{4 - b}\cdot ( b - 1 )] \rightarrow 0| siehe Hinweis
 = 0 - [-e^{2}\cdot ( 1 )]
 = \, [e^{2}]

Der Flaecheninhalt, der sich nach rechts ins Unendliche erstreckt, betraegt e2.


Integral.png