Abi 2012 Geometrie I Teil B
|
Abbildung 1 zeigt modellhaft ein Dachzimmer in der Form eines geraden Prismas. Der Boden und zwei der Seitenwände liegen in den Koordinatenebenen. Das Rechteck ABCD liegt in einer Ebene E und stellt den geneigten Teil der Deckenfläche dar.
b) Berechnen Sie den Abstand des Punkts R von der Ebene E. Im Koordinatensystem entspricht eine Längeneinheit 1 m, d. h. das Zimmer ist an seiner höchsten Stelle 3 m hoch. Das Rechteck GHKL mit G(2/4/2) hat die Breite . Es liegt in der Ebene E, die Punkte H und K liegen auf der Geraden CD. Das Rechteck stellt im Modell ein Dachflächenfenster dar; die Breite des Fensterrahmens soll vernachlässigt werden. c) Geben Sie die Koordinaten der Punkte L, H und K an und bestimmen Sie den Flächeninhalt des Fensters. d) Durch das Fenster einfallendes Sonnenlicht wird im Zimmer durch parallele Geraden mit dem Richtungsvektor repräsentiert. Eine dieser Geraden verläuft durch den Punkt G und schneidet die Seitenwand OPQR im Punkt S. Berechnen Sie die Koordinaten von S sowie die Größe des Winkels, den diese Gerade mit der Seitenwand OPQR einschließt. e) Das Fenster ist drehbar um eine Achse, die im Modell durch die Mittelpunkte der Strecken [GH] und [LK] verläuft. Die Unterkante des Fensters schwenkt dabei in das Zimmer; das Drehgelenk erlaubt eine zum Boden senkrechte Stellung der Fensterfläche. Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden ∈ IR. f) Ermitteln Sie mithilfe von Abbildung 2 die Breite b des Möbelstücks möglichst genau. Bestimmen Sie mithilfe der Gleichung der Geraden k die Tiefe t des Möbelstücks und erläutern Sie Ihr Vorgehen. g) Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.
|