Abi 2016 Stochastik I Teil A

Aus RMG-Wiki
< Abitur Mathematik
Version vom 28. März 2018, 14:45 Uhr von Karina Hetterich (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Mathematik (Bayern): Abiturprüfung 2016
Stochastik I - Teil A


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1


Die beiden Baumdiagramme gehören zum selben Zufallsexperiment mit den Ereignissen A und B. Berechnen Sie die Wahrscheinlichkeit P(B) und ergänzen Sie anschließend an allen Ästen des rechten Baumdiagramms die zugehörigen Wahrscheinlichkeiten.

ABI2016 SI TeilA 1.png



Aufgabe 2

Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen (W) oben liegt. Als Ergebnismenge wird festgelegt: {ZZ; WW; ZWZ; ZWW; WZZ; WZW}.

a) Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

b) Die Zufallsgröße X ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von X.