Abi 2014 Geometrie II Teil B

Aus RMG-Wiki
< Abitur Mathematik
Version vom 10. Juli 2017, 19:12 Uhr von Boardman Jakob (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Mathematik (Bayern): Abiturprüfung 2014
Geometrie II - Teil B


Download der Originalaufgaben - Lösung zum Ausdrucken


Die Abbildung zeigt modellhaft ein Einfamilienhaus, das auf einer horizontalen Fläche steht. Auf einer der beiden rechteckigen Dachflächen soll eine Dachgaube errichtet werden. Die Punkte A, B, C, D, O, P, Q und R sind die Eckpunkte eines Quaders. Das gerade dreiseitige Prisma LMNIJK stellt die Dachgaube dar, die Strecke [GH] den First des Dachs, d. h. die obere waagrechte Dachkante. Eine Längeneinheit im Koordinatensystem entspricht 1 m, d. h. das Haus ist 10m lang.

ABI2014 GII TeilB Grafik.JPG

a) Berechnen Sie den Inhalt derjenigen Dachfläche, die im Modell durch das Rechteck BCHG dargestellt wird.

b) In der Stadt, in der das Einfamilienhaus steht, gilt für die Errichtung von Dachgauben eine Satzung, die jeder Bauherr einhalten muss. Diese Satzung lässt die Errichtung einer Dachgaube zu, wenn die Größe des Neigungswinkels der Dachfläche des jeweiligen Hausdachs gegen die Horizontale mindestens 35° beträgt. Zeigen Sie rechnerisch, dass für das betrachtete Einfamilienhaus die Errichtung einer Dachgaube zulässig ist.

Die Dachfläche, auf der die Dachgaube errichtet wird, liegt im Modell in der Ebene E : 3x1+4x3-44=0.
Die Dachgaube soll so errichtet werden, dass sie von dem seitlichen Rand der Dachfläche, der im Modell durch die Strecke [HC] dargestellt wird, den Abstand 2m und vom First des Dachs den Abstand 1m hat. Zur Ermittlung der Koordinaten des Punkts M wird die durch den Punkt T(4|8|8) verlaufende Gerade t : \vec{x} = \begin{pmatrix}4 \\ 8 \\ 8 \end{pmatrix}+\lambda\cdot\begin{pmatrix}4 \\ 0 \\ -3 \end{pmatrix}, λ∈IR betrachtet.

c) Begründen Sie, dass t in der Ebene E verläuft und von der Geraden HC den Abstand 2 besitzt.

d) Auf der Geraden t wird nun der Punkt M so festgelegt, dass der Abstand der Dachgaube vom First 1 m beträgt. Bestimmen Sie die Koordinaten von M.

(Ergebnis: M(4,8 | 8 |7,4))

Die Punkte M und N liegen auf der Geraden m : \vec{x}=\begin{pmatrix}4,8 \\ 8 \\ 7,4 \end{pmatrix}+\mu \cdot\begin{pmatrix}6 \\ 0 \\ -1 \end{pmatrix}, μ∈IR, die im Modell die Neigung der Dachfläche der Gaube festlegt. Die zur x3-Achse parallele Strecke [NL] stellt im Modell den sogenannten Gaubenstiel dar; dessen Länge soll 1,4m betragen. Um die Koordinaten von N und L zu bestimmen, wird die Ebene F betrachtet, die durch Verschiebung von E um 1,4 in positive x3-Richtung entsteht.

e) Begründen Sie, dass 3x1+4x3-49,6=0 eine Gleichung von F ist.

f) Bestimmen Sie die Koordinaten von N und L.

(Teilergebnis: N(7,2|8|7))