Quint-System5

Aus RMG-Wiki
< Benutzer:Grieninger Sebastian‎ | Facharbeit
Version vom 20. Dezember 2010, 02:29 Uhr von Grieninger Sebastian (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Das pythagoreische Komma



Nach der 12. Quinte sollte man eigentlich wieder beim Anfangston angelangt sein. 12 Quinten sollten 7 Oktaven entsprechen.
Jedoch gilt für 12 Quinten:

 Q^{12} = (\frac{3}{2})^{12} = 129{,}7463379;

für 7 Oktaven gilt:

Ok^7 = 2^7 = 128;

Man sieht, dass die 12 Quinten die 7 Oktaven übertreffen.

Das pythagoreische Komma entspricht dem Verhältnis der 12 Quinten zu den 7 Oktaven

\frac {12 Q} {7 Ok} =  \frac {(\frac {3}{2})^{12}} {2^7} = 531441/524288 Alternativ lässt sich das pythagoreische Komma auch durch die Differenz von Aptome und Leimma berechnen.

Leimma ist der oben berechnetet Halbtonschritt (Quarte-Ditonus) = \textstyle \frac {256}{243}

Aptome berechnet sich aus tonus – Leimma (Ganzton-Halbton) = \textstyle \frac {2187}{2048}

Das Verhältnis der 12 Quinten zu den 7 Oktaven entspricht der Differenz aus Aptome und Leimma, also

\frac{12Q}{7Ok}= A - L =  \frac{2187}{2048} : \frac{256}{243} = \frac{531441}{524288};

Die Differenz aus Aptome und Leimma kann man aus folgender Gegebenheit ableiten:
der letzte Ton der pythagoreischen Tonleiter ist etwas höher als die Oktave. Wir haben oben folgende Formel für die pythagoreische Tonleiter definiert:

 H(A_u) = i^u \cdot H(A_o); u = (0),1,2,...,6;

Da die pythagoreische Tonleiter nur 6 Töne hat berechnet sich die Höhe des 6. Tons wie folgt:

H (A_6) = (\frac{9}{8})^6 = 2,02728653;

Da wir uns nun etwas mehr als eine Oktave über unserem Ausgangston befinden, müssen wir diese wieder abziehen um die Abweichen vom Grundton festzustellen. 2,02728653 - Ok = 2,02728653/2 = 1,013643265 ↔ 531441/524288 In der pythagoreischen Tonleiter befinden sich 2 Halbtonschritte. Zusammen sind sie etwas kleiner ein Ganzton, genauer gesagt wenn man von einem Ganzton zwei Halbtonschritte abzieht erhält man das pythagoreische Komma, d.h.  \frac {\frac {9}{8}} {\frac {256}{243}^2} = pythagoreisches Komma. Durch eine einfach Umformung lässt sich also die Behauptung A – L bestätigen:  A = \frac {\frac {9}{8}} {\frac {256}{243}}; L = \frac {256}{243}; Für A – L gilt also  \frac {\frac {\frac {9}{8}} {\frac {256}{243}}}{\frac {256}{243}} = \frac {\frac {9}{8}} {\frac {256}{243}^2}; .

Anmerkung: In der Literatur wird für das pythagoreische Komma oft auch der Wert \textstyle \frac{74}{73} angegeben. Allerdings ist dieser Wert eine Näherung. Umgerechnet in Cent beträgt das pythagoreische Komma: C =  1200 \cdot \frac {log\frac {\frac {3}{2}^{12}}{2^7}} {log 2} = 23,460039 \ Cent.

weiter zum pythagoreischen Quintenzirkel und der pythagoreischen C-Dur Tonleiter

zurück zur Übersichtsseite