2005 II

Aus RMG-Wiki
< LK Mathematik‎ | Abitur
Version vom 4. März 2010, 18:02 Uhr von Gehrig Melissa (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Leistungskurs Mathematik (Bayern): Abiturprüfung 2005
Infinitesimalrechnung II


Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern - Lösungen zum Ausdrucken


Lösungen erstellt von: Sara Schirmer und Melissa Gehrig


Aufgabe 1

Gegeben ist die Funktion f:x \rightarrow ln {-1 \over 1+x} mit dem maximal möglichen Definitionsbereich D. Der Graph von f wird mit Gf bezeichnet.

a) Bestimmen Sie D, die Nullstelle von f sowie das Verhalten von f an den Rändern von D.
4 BE
ABI 2005 II 1a Lös.jpg


b) Untersuchen Sie das Monotonieverhalten von f.
4 BE
ABI 2005 II 1b Lös.jpg


c) Warum besitzt f eine Umkehrfunktion? Geben Sie die Definitionsmenge der Umkehrfunktion f^{-1} an und ermitteln Sie den Funktionsterm f^{-1}(x).
5 BE
ABI 2005 II 1c Lös.jpg


d) Skizzieren Sie unter Berücksichtigung der bisherigen Ergebnisse die Graphen der Funktionen f und f^{-1} in ein Koordinatensystem. Tragen Sie dazu auch alle Asymptoten sowie die Schnittpunkte mit den Koordinatenachsen ein.
5 BE
ABI 2005 II 1d Lös.jpg


e) Der Graph Gf die x-Achse und die Gerade x=–1 schließen im zweiten Quadranten ein sich ins Unendliche erstreckendes Flächen¬stück mit endlichem Inhalt ein. Berechnen Sie den Inhalt dieses Flächenstücks.
4 BE
ABI 2005 II 1e Lös.jpg