Abi 2016 Analysis II Teil B
|
Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der x-Achse, sein Mittelpunkt M im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten: I Breite des Tunnelbodens: b=10m II Höhe des Tunnels an der höchsten Stelle: h=5m III Der Tunnel ist auf einer Breite von mindestens 6m mindestens 4m hoch.
Die Schülerinnen und Schüler untersuchen nun den Abstand d(x) der Graphenpunkte Px(x/p(x)) vom Ursprung des Koordinatensystems. b) Zeigen Sie, dass gilt. c) Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu M minimal ist. Bestimmen Sie die x-Koordinaten der Punkte Px , für die d(x) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.
|