Abi 2014 Stochastik II Teil A
Stochastik Aufgabengruppe 2
1) In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment: Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.
a) Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durch-führung des Zufallsexperiments an.
b) Betrachtet wird das Ereignis E: „Nach Durchführung des Zufallsexperi-ments befinden sich wieder drei weiße Kugeln in Urne A.“ Untersuchen Sie, ob das Ereignis E eine größere Wahrscheinlichkeit als sein Gegenereignis hat.
2 Das Baumdiagramm gehört zu einem Zufallsexperiment mit den Ereignissen C und D.
a) Berechnen Sie
b)Weisen Sie nach, dass die Ereignisse C und D abhängig sind.
c) Von den im Baumdiagramm angegebenen Zahlenwerten soll nur der Wert so geändert werden, dass die Ereignisse C und D unabhängig sind. Bestimmen Sie den geänderten Wert.