"In der Welt geschieht nichts, worin man nicht den Sinn
eines bestimmten Maximums oder Minimums erkennen könnte." -Leonhard Euler
Leonhard Euler
Leonhard Euler
Übersicht
-
-
-
-
|
Wissenswertes
Merkmale der natürlichen Exponentialfunktion f(x)=ex
- Die natürliche Exponentialfunktion f(x)=ex hat die Ableitungsfunktion f'(x)=ex .
- Eine Stammfunktion ist F(x)=ex + c . (Stammfunktion: F'(x)=f(x))
- Der Graph geht durch den Punkt (0/1).
- Der Graph besitzt keine Nullstellen, da ex > 0 ist. Dies gilt für alle x E R.
- W= R+
- Monotonie: streng monoton steigend; Extremwerte: keine Extremwerte.
- Die e-Funktion ist die Umkehrfunktion der ln-Funktion.
</div>
|
Zurück zur Übersicht
Zurück zur Übersicht
|
Einstiegsaufgaben
Übungen zur natürlichen Exponentialfunktion
1. Einstiegsaufgaben
Bestimmen Sie die Ableitungsfunktion der vorgegebenen Funktion f und berechnen Sie die Steigung des Graphen f an der Stelle x=1.
f(x)=5ex + x
-Ableitung: f'(x)=5ex + 1;
-Steigung: f'(1)=5e+1;
Abituraufgaben mit Lösungen zur Vorbereitung
weiteres Lernmaterial zur Vorbereitung
Bei den Aufgaben zur Vereinfachung eines Termes sind oft die Potenzgesetze notwendig:
WIEDERHOLUNG:
-Bemerkung: a,b E |R+ \ {1} und x,y E |R
1. ax * by = ax+y
2. ax/ay = ax-y
3. ax * bx = (a*b)x
4. ax/bx = (a/b)x
5. (ax)y = ax*y
|
Differenziere folgende Funktionsterme!
1. f1(x)= e3x-8
2. f2(x)= excosx
3. f3(x)= e-x
4. f4(X)= (x2- 4)ex
Finde die Stammfunktion zu den beiden gegebenen Funktionstermen!
1. f1(x)= 5e2x
2. f2(x)= 3e2x+1