2006 II

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Leistungskurs Mathematik (Bayern): Abiturprüfung 2006
Infinitesimalrechnung II


Download der Originalaufgaben: Abitur 2006 LK Mathematik Bayern - Lösung gesamt


Erarbeitet von Straßheimer Florian, Etzel Andre


Aufgabe 1

1.Gegeben ist die Schar der Funktionen

f_k = \frac{k}{1+e^{-kx}}

mit k \in IR^{+} und Definitionsmenge IR \,. G_k \, bezeichnet den Graphen von f_k \,.

a) Untersuchen Sie das Verhalten von f_k \, für x \rightarrow +\infty und x \rightarrow -\infty.

[Lösung anzeigen]

b) Bestimmen Sie das Monotonieverhalten von und geben Sie die Wertemenge an. [mögliches Zwischenergebnis: ]

[Lösung anzeigen]

c) Weisen Sie nach, dass der Punkt der einzige Wendepunkt von ist.

[Lösung anzeigen]

d) Weisen Sie nach, dass für alle kIR+ und alle xIR gilt: . Begründen Sie damit die Symmetrie von zum Punkt .

[Lösung anzeigen]

e) Die beiden Koordinatenachsen und begrenzen im zweiten Quadranten ein sich ins Unendliche erstreckendes Flächenstück. Veranschaulichen Sie dieses Flächenstück in einer Skizze. Zeigen Sie, dass das Flächenstück den endlichen Inhalt besitzt. (Hinweis: Für die Integration ist es hilfreich, den Funktionsterm mit zu erweitern.)

[Lösung anzeigen]



Aufgabe 2

2. Bei vielen Wachstumsvorgängen ist kein unbeschränktes Wachstum möglich. Dies gilt z. B. auch für eine Bakterienkultur, deren Bakterienzahl schließlich einer oberen Grenze entgegenstrebt. Die Zahl der Bakterien einer Kultur wird näherungsweise durch die Funktion N mit , beschrieben. Dabei gibt x die Zeit in Stunden an, die seit dem Ansetzen der Bakterienkultur vergangen ist. Die Abbildung zeigt den Graphen von N.

a) Geben Sie an, wie der Graph von N aus der Aufgabe 1 entsteht.

[Lösung anzeigen]

b) Mit wie vielen Bakterien wurde die Kultur angesetzt, wie viele Bakterien sind es nach zwei Stunden?

[Lösung anzeigen]

c) Berechnen Sie, nach welcher Zeit 90 % des Grenzbestandes von 2 Millionen Bakterien erreicht sind.

[Lösung anzeigen]

d) Schätzen Sie rechnerisch ab, wie viele Bakterien in der Minute stärksten Wachstums hinzukommen.

[Lösung anzeigen]