Abi 2015 Geometrie II Teil A

Aus RMG-Wiki
< Abitur Mathematik
Version vom 23. Juli 2017, 21:41 Uhr von Maria Eirich (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Mathematik (Bayern): Abiturprüfung 2015
Geometrie II - Teil A


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1

Die Gerade g verläuft durch die Punkte A (0|1|2) und B (2|5|6).

a)Zeigen Sie, dass die Punkte A und B den Abstand 6 haben. Die Punkte C und D liegen auf g und haben von A jeweils den Abstand 12. Bestimmen Sie die Koordinaten von C und D.

b)Die Punkte A, B und E (1|2|5) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten. Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.



Aufgabe 2

Die Abbildung zeigt die Pyramide ABCDS mit quadratischer Grundfläche ABCD. Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.

a)Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide ABCDS an.

b)Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte B und S verläuft. Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.