Abi 2014 Analysis I Teil A
|
Gegeben ist die Funktion mit Definitionsmenge IR+\{1}. Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.
|
Gegeben ist die in IR definierte Funktion f mit . a) Bestimmen Sie die Nullstellen der Funktion f. b) Zeigen Sie, dass die in IR definierte Funktion F mit eine Stammfunktion von f ist. Geben Sie eine Gleichung einer weiteren Stammfunktion G von f an, für die gilt. |
Gegeben sind die in IR definierten Funktionen mit a,c ∈ IR+0. a) Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für a und einen möglichen Wert für c so an, dass die zugehörige Funktion ga,c diese Eigenschaft besitzt. α) Die Funktion ga,c hat die Wertemenge [0;2].
β) Die Funktion ga,c hat im Intervall [0;π] genau drei Nullstellen.
|
Die Abbildung zeigt den Graphen einer Funktion f. a) Beschreiben Sie für a ≤ x ≤ b den Verlauf des Graphen einer Stammfunktion von f. b) Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von f im gesamten dargestellten Bereich. |