Benutzer:Karina Hetterich

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Gib das Verhalten der folgenden Funktionen für  x \rightarrow \infty \, und \, x \rightarrow  \infty an. <\br> Gib den Grenzwert als Dezimalzahl an oder verwende "u" für  \infty  und "-u" für   -\infty .

f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 1 x + \frac 3 5 \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^4+2} {-5x^4+1} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^4+2} {-5x^4+1} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^5+4x^2} {x^2-5x^4} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac {3x^2-x-3x^5} {5x^5+x+1} \qquad \lim_{x \to -\infty}f(x)=
f(x)=\frac 3 5 x^3  \frac 3 5 x^2 \qquad \lim_{x \to \infty}f(x)=
f(x)=\frac 3 5 x^3  \frac 3 5 x^2 \qquad \lim_{x \to -\infty}f(x)=
f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to \infty}f(x)=
f(x)=5 \cdot (\frac 1 3)^x \qquad \lim_{x \to -\infty}f(x)=

Punkte: 0 / 0