Mathematische Grundlagen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche

Aber nun zu den mathematischen Grundlagen, die für RSA relevant sind.

Aufgabe:

Alice möchte Bob die Punktzahl ihrer letzten Matheklausur übersenden. Da sie nun weiß, dass ein Unbekannter ihre Nachrichten liest, versucht sie die Information so zu übersenden, dass Mallory die Punktzahl nicht herausfindet. Weil sie noch kein Verschlüsselungsverfahren einsetzt, versucht sie es wie folgt:
„Meine Punktzahl ist der größte gemeinsame Teiler der Zahlen 90 und 105.“
Und es funktioniert tatsächlich, Mallory, der Mathe immer gehasst hat, erkennt nicht, welche Punktzahl Alice erreicht hat.

Kannst du die Punktzahl von Alice ermitteln?


Den größten gemeinsamen Teiler (ggT) von natürlichen Zahlen hast du bereits in der 5.Klasse berechnet. Dazu hast du, wie in obigem Beispiel, Zahlen in ihre Primfaktoren zerlegt und daraus anschließend den ggT ermittelt. Das es zu jeder natürlichen Zahl n eine eindeutige Primfaktorzerlegung gibt, zeigt folgender Satz:

Satz 1.0 (Fundamentalsatz der elementaren Zahlentheorie oder Satz über die eindeutige Primfaktorzerlegung)
Jede natürliche Zahl n > 1 lässt sich auf eindeutige Weise in ein Produkt von Primfaktoren zerlegen.