2008 VI

Aus RMG-Wiki
Wechseln zu: Navigation, Suche


Leistungskurs Mathematik (Bayern): Abiturprüfung 2008
Geometrie VI


Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern - Lösungen zum Ausdrucken


Aufgabe 1

In einem kartesischen Koordinatensystem des IR3 sind die Punkte M(−2|4|1), S(6|8|9), P(4|−8|1) sowie die Gerade g : \vec x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, λ ∈ IR gegeben. Die Strecke [MS] ist die Höhe eines geraden Kreiskegels. Sein Grundkreis k um den Punkt M hat den Radius 6\sqrt{5} und liegt in der Ebene E.
Datei:Beispiel.jpg

a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.
[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0]

ABI 2008 VI Grafik A1.jpg


ABI 2009 III 1a Lös.jpg


b) Die Wahrscheinlichkeit für eine fehlerhafte Fliese sei p. Wie würde die Entscheidungsregel mit einem möglichst großen Ablehnungsbereich lauten, wenn man die Nullhypothese H0: p > 0,1 anhand der 50 Fliesen eines Kartons auf dem Signifikanzniveau 5 % testen würde?

ABI 2009 III 1b Lös.jpg



Aufgabe 2