Lösung von Teilaufgabe d
Inhaltsverzeichnis |
Kongruenz der Dreiecke
Die Dreiecke werden durch die Punkte , und festgelegt.
1.Punkt :
Der Punkt Ra liegt für alle a bei Ra ( a / 0 )
2.Punkt :
Der Punkt Ha liegt für alle a bei Ha ( a + 1 / e )
3.Punkt :
Der Punkt Wa liegt für alle a bei Wa ( a + 2 / 2 )
Mit den drei bestimmten Punkten Ra, Ha und Wa lässt sich erkennen, dass die Dreiecke für alle verschiedene a kongruent sind. Die y-Werte aller drei Punkte sind für alle a identisch. Daraus schließt man, dass sich die drei Punkte nur auf der x-Achse beziehungsweise auf einer Parallelen zur x-Achse, immer um den gleichen Wert, nämlich um a, verschieben. Da sich die Punkte nur auf Parallelen zur x-Achse verschieben, heißt das natürlich auch, dass sich das Dreieck nur auf der x-Achse verschiebt und somit immer kongruent ist.
Flächeninhalt des Dreiecks
Der Flächeninhalt eines Dreiecks im zweidimensionalen Raum beträgt nach der Formelsammlung (Mathematische Formeln und Definitionen von Barth, Mühlbauer, Nikol, Wörle) auf Seite 81:
Der Flächeninhalt beträgt, unabhängig von a, | 1 - e |
Grafik zur Kongruenz und zum Flächeninhalt der Dreiecke
1. In der Graphik lässt sich deutlich erkennen, das die Dreiecke, bestehend aus den Punkten ,
und für alle a kongruent (dekungsgleich) sind.
2. Aus erstens folgt zwangsweise auch, dass der Flächeninhalt für alle a gleich groß bleibt. Dies lässt sich auch deutlich in der Graphik erkennen.