Abi 2017 Geometrie I Teil B: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 45: Zeile 45:
 
}}
 
}}
  
 +
[[Bild:ABI2017_GII_TeilB_1d.png|right|150px]]
 
Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck ABCD dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungs punkt am Solarmodul durch den Punkt M beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der x<sub>1</sub>x<sub>2</sub>-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8m in der Realität.
 
Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck ABCD dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungs punkt am Solarmodul durch den Punkt M beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der x<sub>1</sub>x<sub>2</sub>-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8m in der Realität.
[[Bild:ABI2017_GII_TeilB_1d.jpg|right|350px]]
+
 
 
<br />
 
<br />
  

Aktuelle Version vom 28. März 2018, 14:23 Uhr


Mathematik (Bayern): Abiturprüfung 2017
Geometrie II - Teil B


Download der Originalaufgaben - Lösung zum Ausdrucken


In einem kartesischen Koordinatensystem sind die Punkte A (0|0|1),B (2|6|1), C (-4|8|5) und D (-6|2|5) gegeben. Sie liegen in einer Ebene E und bilden ein Viereck ABCD, dessen Diagonalen sich im Punkt M schneiden.

a) Begründen Sie, dass die Gerade AB parallel zur x1x2-Ebene verläuft.

ABI2017 GI TeilB 1a Lös.jpg


b) Weisen Sie nach, dass das Viereck ABCD ein Rechteck ist. Bestimmen Sie die Koordinaten von M.

(Teilergebnis: M (-2|4|3) )
ABI2017 GI TeilB 1b Lös.jpg


c) Ermitteln Sie eine Gleichung der Ebene E in Normalenform. (mögliches Ergebnis: E: 3x1-x2+5x3-5=0)

ABI2017 GI TeilB 1c Lös.jpg
ABI2017 GII TeilB 1d.png

Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck ABCD dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungs punkt am Solarmodul durch den Punkt M beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der x1x2-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8m in der Realität.


d) Um einen möglichst großen Energieertrag zu erzielen, sollte die Größe des Neigungswinkels φ des Solarmoduls gegenüber der Horizontalen zwischen 30° und 36° liegen. Prüfen Sie, ob diese Bedingung erfüllt ist.

ABI2017 GI TeilB 1d Lös.jpg


e) Auf das Solarmodul fällt Sonnenlicht, das im Modell durch parallele Gera den dargestellt wird, die senkrecht zur Ebene E verlaufen. Das Solarmodul erzeugt auf der horizontalen Fläche einen rechteckigen Schatten. Zeigen Sie unter Verwendung einer geeignet beschrifteten Skizze, dass der Flächeninhalt des Schattens mithilfe des Terms  |\vec{AB}| \cdot  \frac{|\vec{AD}|}{cos \phi} \cdot (0,8m)^{2} berechnet werden kann.

ABI2017 GI TeilB 1e Lös.jpg

f) Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels φ gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt A dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

ABI2017 GI TeilB 1f Lös.jpg