Abi 2012 Geometrie I Teil B: Unterschied zwischen den Versionen
Zeile 29: | Zeile 29: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1a_Lös.jpg|700px]] |
}} | }} | ||
Zeile 35: | Zeile 35: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1b_Lös.jpg|700px]] |
}} | }} | ||
Zeile 45: | Zeile 45: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1c_Lös.jpg|700px]] |
}} | }} | ||
Zeile 51: | Zeile 51: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1d_Lös.jpg|700px]] |
}} | }} | ||
Zeile 59: | Zeile 59: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1e_Lös.jpg|700px]] |
}} | }} | ||
− | + | [[Bild:ABI2012 GI TeilB 1f.png|center|350px]] | |
Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden | Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden | ||
<math> k: \vec X = \begin{pmatrix} 0 \\ 5,5 \\ 0,4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix} ; \lambda </math>∈ IR. | <math> k: \vec X = \begin{pmatrix} 0 \\ 5,5 \\ 0,4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix} ; \lambda </math>∈ IR. | ||
Zeile 70: | Zeile 70: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1f_Lös.jpg|700px]] |
}} | }} | ||
Zeile 76: | Zeile 76: | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild: | + | [[Bild:ABI2012_GI_TeilB_1g_Lös.jpg|700px]] |
}} | }} | ||
Version vom 24. Juli 2017, 18:27 Uhr
|
Abbildung 1 zeigt modellhaft ein Dachzimmer in der Form eines geraden Prismas. Der Boden und zwei der Seitenwände liegen in den Koordinatenebenen. Das Rechteck ABCD liegt in einer Ebene E und stellt den geneigten Teil der Deckenfläche dar.
b) Berechnen Sie den Abstand des Punkts R von der Ebene E. Im Koordinatensystem entspricht eine Längeneinheit 1 m, d. h. das Zimmer ist an seiner höchsten Stelle 3 m hoch. Das Rechteck GHKL mit G(2/4/2) hat die Breite . Es liegt in der Ebene E, die Punkte H und K liegen auf der Geraden CD. Das Rechteck stellt im Modell ein Dachflächenfenster dar; die Breite des Fensterrahmens soll vernachlässigt werden. c) Geben Sie die Koordinaten der Punkte L, H und K an und bestimmen Sie den Flächeninhalt des Fensters. d) Durch das Fenster einfallendes Sonnenlicht wird im Zimmer durch parallele Geraden mit dem Richtungsvektor repräsentiert. Eine dieser Geraden verläuft durch den Punkt G und schneidet die Seitenwand OPQR im Punkt S. Berechnen Sie die Koordinaten von S sowie die Größe des Winkels, den diese Gerade mit der Seitenwand OPQR einschließt. e) Das Fenster ist drehbar um eine Achse, die im Modell durch die Mittelpunkte der Strecken [GH] und [LK] verläuft. Die Unterkante des Fensters schwenkt dabei in das Zimmer; das Drehgelenk erlaubt eine zum Boden senkrechte Stellung der Fensterfläche. Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden ∈ IR. f) Ermitteln Sie mithilfe von Abbildung 2 die Breite b des Möbelstücks möglichst genau. Bestimmen Sie mithilfe der Gleichung der Geraden k die Tiefe t des Möbelstücks und erläutern Sie Ihr Vorgehen. g) Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.
|