Term und Zahl: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
 
| type="{}" }
 
| type="{}" }
 
<math>\frac48 a-(  \frac24 a- \frac93 b) =</math> { 3b }
 
<math>\frac48 a-(  \frac24 a- \frac93 b) =</math> { 3b }
<math> -x(-1-x)-(3+x)(4-x)+12=</math> { "0" }
+
<math> -x(-1-x)-(3+x)(4-x)+12=</math> { 0 }
 
</quiz>
 
</quiz>
  

Version vom 23. Juli 2014, 18:52 Uhr

Teste dein Wissen


Pluspunkt für eine richtige Antwort:  Syntaxfehler
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. 1.Vereinfache folgende Terme soweit wie möglich.

\frac48 a-(  \frac24 a- \frac93 b) =
 -x(-1-x)-(3+x)(4-x)+12=

Punkte: 0 / 0


2.Setze im ersten Term die Klammern so, dass eine richtige Termumformung entsteht.
-2a^2+4a \cdot 2 - a = 8a


-2a^3+2b^3+b^3 = -8a^3+4b^3



3.Klammere den größtmöglichen Faktor aus.
 12xy^2-18xy+15x^2y


 4(x+y)+5(2x+2y)



4.Faktorisiere den Term (mit Hilfe der binomischen Formeln)
 9a^2-30a+25


9a^4-30a^3+25a^2


9a^2-25



5. Gib die Definitionsmenge an und vereinfache soweit wie möglich
 \frac{32a^2+a}{a}


 \frac{x^4}{x^6(x-2)}



6) Vereinfache soweit wie möglich (a>0)
 \sqrt a \cdot (\sqrt a)^3 a^{-3}


 (16^{\frac1 4} a^{\frac1 a})^4


 8^x:2^x