Mathematik - Wettbewerbe: Unterschied zwischen den Versionen
Zeile 19: | Zeile 19: | ||
− | <center><big>[[Mathematik/Mathematik - Wettbewerbe#Fürther Mathematik-Olympiade (FüMO)|FüMO]] - [[Mathematik/Mathematik - Wettbewerbe#Landeswettbewerb|Landeswettbewerb]] - [[Mathematik/Mathematik - Wettbewerbe#Bundeswettbewerb|Bundeswettbewerb]] - [[Mathematik/Mathematik - Wettbewerbe#Känguru-Wettbewerb|Känguru-Wettbewerb]]</big></center> | + | <center><big>[[Mathematik/Mathematik - Wettbewerbe#Fürther Mathematik-Olympiade (FüMO)|FüMO]] - [[Mathematik/Mathematik - Wettbewerbe#Mathematik-Olympiade (MO)|MO]] - [[Mathematik/Mathematik - Wettbewerbe#Landeswettbewerb|Landeswettbewerb]] - [[Mathematik/Mathematik - Wettbewerbe#Bundeswettbewerb|Bundeswettbewerb]] - [[Mathematik/Mathematik - Wettbewerbe#Känguru-Wettbewerb|Känguru-Wettbewerb]]</big></center> |
</td></tr></table></center> | </td></tr></table></center> | ||
Zeile 61: | Zeile 61: | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
− | + | ||
===<span style="color: darkblue">Mathematik-Olympiade (MO)</span>=== | ===<span style="color: darkblue">Mathematik-Olympiade (MO)</span>=== | ||
*Alle Schülerinnen und Schüler dürfen prinzipiell teilnehmen. Aus organisatorischen Gründen werden bevorzugt diejenigen Schüler eingeladen, die bereits in anderen Wettbewerben Erfolge gezeigt haben. | *Alle Schülerinnen und Schüler dürfen prinzipiell teilnehmen. Aus organisatorischen Gründen werden bevorzugt diejenigen Schüler eingeladen, die bereits in anderen Wettbewerben Erfolge gezeigt haben. | ||
− | * | + | *Die erste Runde des Wettbewerbs, die Schulrunde, besteht aus einer "Hausaufgaben-Runde", d.h. die Aufgaben werden zu Hause bearbeitet. Dazu hat man jeweils ca. 3 Wochen Zeit. |
+ | |||
+ | *Die zweite Runde ist die Regionalrunde. Diese findet als vierstündige Klausur an der Schule statt. | ||
*Pro Runde sind vier Aufgaben zu lösen. | *Pro Runde sind vier Aufgaben zu lösen. | ||
+ | |||
+ | *Die allerbesten der Regionalrunde können dann zur Landesrunde eingeladen werden, welche dieses Jahr vom 22.2. bis 24.2. in Würzburg stattfindet. | ||
*Zu einer vollständigen Lösung gehört die Begründung aller wesentlichen Zwischenschritte. | *Zu einer vollständigen Lösung gehört die Begründung aller wesentlichen Zwischenschritte. | ||
+ | '''Erfolgreiche Teilnehmer 2012: | ||
+ | Marek Eisenacher (6d, 2. Platz in der 1. Runde und 3. Platz in der 2. Runde) | ||
+ | Paul Welsch (7g, 3. Platz in der 1. Runde) | ||
+ | Tony Oehm (7f, 2. Platz in der 1. Runde und 3. Platz in der 2. Runde) | ||
+ | Lea Hofmann(2. Platz in der 2. Runde) | ||
+ | Jakob Röder (7f, 2. Platz in der 1. Runde und 3. Platz in der 2. Runde) | ||
+ | Maximilian Linz (10a, 3. Platz in der beiden Runden) | ||
+ | Peter Helfrich (Q12, 1. Platz in der 1. Runde) | ||
+ | Benedikt Wolf (Q12, 1. Platz in der 1. und 2. Runde)''' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</td></tr></table></center> | </td></tr></table></center> |
Version vom 31. Januar 2013, 19:19 Uhr
Ergebnisse aus Wettbewerben können als mündliche Note gewertet werden. Die Seminararbeit kann durch einen gleichwertigen Beitrag zu einem vom Staatsministerium als geeignet anerkannten Wettbewerb aus dem gleichen Aufgabenfeld, z.B. dem Bundeswettbewerb Mathematik, ersetzt werden.
|
Fürther Mathematik-Olympiade (FüMO)
- die ausführlichen Teilnahmebedingungen - die aktuellen Aufgaben - die Aufgaben der Vorjahre zum Reinschnuppern und Üben: |
Mathematik-Olympiade (MO)
|
Landeswettbewerb
|
Bundeswettbewerb
|
Känguru-Wettbewerb |
Gedanken eines Schülers über seine Teilnahme an den Wettbewerben"Man braucht nicht unbedingt viele mathematische Kenntnisse, um bei Wettbewerben erfolgreich teilzunehmen. Viel wichtiger ist eine ausgeprägte Neugier und eine hohe Frustrationstoleranz. Der besondere Reiz an den Aufgaben bei Mathematikolympiaden oder -wettbewerben liegt nämlich gerade darin, dass man anfangs häufig keine genaue Vorstellung davon hat, wie man diese Aufgabe lösen könnte. Wenn man sich aber darauf einlässt, dass der erste Ansatz sehr wahrscheinlich nicht zum Erfolg führt und sich immer wieder kritisch prüft, dann wird man leicht auch von scheinbar trivialen und harmlosen Aufgaben in den Bann gezogen. Anfangs gänzlich unbemerkt wandern die Gedanken immer häufiger zurück zu den ungelösten Aufgaben, bis plötzlich an einer vollkommen unerwarteten Stelle, zum Beispiel beim Schlafen oder auch in manchen Unterrichtsstunden, ein zielführender Gedanke auftaucht. Selbst wenn dieser Gedanke doch nicht zielführend sein sollte, entfaltet er eine Vielzahl völlig neuer, bisher ungeahnter, Ideen und Möglichkeiten. Das geht sogar so weit, dass ein falscher Lösungsansatz zu einer Aufgabe zur Lösung für eine andere wird. Das Schöne an den Aufgaben ist folglich nicht einmal das Gefühl des Triumphes, wenn man eine Aufgabe gelöst hat, sondern mehr noch die Erkenntnis der unglaublich vielen Denkrichtungen, die man auch im Alltagsleben einschlagen kann. Insofern schulen die mathematischen Wettbewerbe nicht nur die logische Denkfähigkeit und wecken Interesse an mathematischen Inhalten, sondern sorgen auch für eine gut ausgeprägte Kreativität. Die Beschäftigung mit einer Wettbewerbsaufgabe kann tatsächlich zu einem Staunen führen: über seine eigenen Fähigkeiten, die beinahe grenzenlose Vielfalt der Mathematik und über scheinbar Alltägliches. Um mathematische Begabungen zu entdecken und gezielt zu fördern, beteiligt sich unsere Schule nun seit Jahren an den verschiedensten Wettbewerben, die außerunterrichtliche Motivation zur intensiven Beschäftigung mit mathematischen Inhalten bieten." |