Mathematik - Wettbewerbe: Unterschied zwischen den Versionen
Zeile 26: | Zeile 26: | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
− | [[Datei: Logo MoHas14.jpg| | + | [[Datei: Logo MoHas14.jpg|120px|right]] |
===<span style="color: darkblue">Fürther Mathematik-Olympiade (FüMO)</span>=== | ===<span style="color: darkblue">Fürther Mathematik-Olympiade (FüMO)</span>=== | ||
Zeile 39: | Zeile 39: | ||
*Zu einer vollständigen Lösung gehört die Begründung aller wesentlichen Zwischenschritte. | *Zu einer vollständigen Lösung gehört die Begründung aller wesentlichen Zwischenschritte. | ||
− | *Besonders wichtig: Für jede Aufgabe ist ein gesondertes Blatt DIN A 4 zu verwenden, | + | *Besonders wichtig: Für jede Aufgabe ist ein gesondertes Blatt DIN A 4 zu verwenden, das mit Namen, Klasse und Schule zu versehen ist. |
− | das mit Namen, Klasse und Schule zu versehen ist. | + | |
*Die Lösungen und die unterschriebene Erklärung, dass alle Aufgaben selbstständig gelöst wurden, werden beim Mathematiklehrer abgegeben. Bitte alles mit einer Büroklammer zusammenheften. | *Die Lösungen und die unterschriebene Erklärung, dass alle Aufgaben selbstständig gelöst wurden, werden beim Mathematiklehrer abgegeben. Bitte alles mit einer Büroklammer zusammenheften. | ||
+ | |||
'''Abgabeschluss der 1. Runde: 26.11.2012''' | '''Abgabeschluss der 1. Runde: 26.11.2012''' | ||
+ | |||
Hier gibt es | Hier gibt es |
Version vom 5. November 2012, 09:10 Uhr
Ergebnisse aus Wettbewerben können als mündliche Note gewertet werden. Die Seminararbeit kann durch einen gleichwertigen Beitrag zu einem vom Staatsministerium als geeignet anerkannten Wettbewerb aus dem gleichen Aufgabenfeld, z.B. dem Bundeswettbewerb Mathematik, ersetzt werden.
|
Fürther Mathematik-Olympiade (FüMO)
- die ausführlichen Teilnahmebedingungen - die aktuellen Aufgaben - die Aufgaben der Vorjahre zum Reinschnuppern und Üben: |
Landeswettbewerb
|
Bundeswettbewerb
|
Känguru-Wettbewerb |
Gedanken eines Schülers über seine Teilnahme an den Wettbewerben"Man braucht nicht unbedingt viele mathematische Kenntnisse, um bei Wettbewerben erfolgreich teilzunehmen. Viel wichtiger ist eine ausgeprägte Neugier und eine hohe Frustrationstoleranz. Der besondere Reiz an den Aufgaben bei Mathematikolympiaden oder -wettbewerben liegt nämlich gerade darin, dass man anfangs häufig keine genaue Vorstellung davon hat, wie man diese Aufgabe lösen könnte. Wenn man sich aber darauf einlässt, dass der erste Ansatz sehr wahrscheinlich nicht zum Erfolg führt und sich immer wieder kritisch prüft, dann wird man leicht auch von scheinbar trivialen und harmlosen Aufgaben in den Bann gezogen. Anfangs gänzlich unbemerkt wandern die Gedanken immer häufiger zurück zu den ungelösten Aufgaben, bis plötzlich an einer vollkommen unerwarteten Stelle, zum Beispiel beim Schlafen oder auch in manchen Unterrichtsstunden, ein zielführender Gedanke auftaucht. Selbst wenn dieser Gedanke doch nicht zielführend sein sollte, entfaltet er eine Vielzahl völlig neuer, bisher ungeahnter, Ideen und Möglichkeiten. Das geht sogar so weit, dass ein falscher Lösungsansatz zu einer Aufgabe zur Lösung für eine andere wird. Das Schöne an den Aufgaben ist folglich nicht einmal das Gefühl des Triumphes, wenn man eine Aufgabe gelöst hat, sondern mehr noch die Erkenntnis der unglaublich vielen Denkrichtungen, die man auch im Alltagsleben einschlagen kann. Insofern schulen die mathematischen Wettbewerbe nicht nur die logische Denkfähigkeit und wecken Interesse an mathematischen Inhalten, sondern sorgen auch für eine gut ausgeprägte Kreativität. Die Beschäftigung mit einer Wettbewerbsaufgabe kann tatsächlich zu einem Staunen führen: über seine eigenen Fähigkeiten, die beinahe grenzenlose Vielfalt der Mathematik und über scheinbar Alltägliches. Um mathematische Begabungen zu entdecken und gezielt zu fördern, beteiligt sich unsere Schule nun seit Jahren an den verschiedensten Wettbewerben, die außerunterrichtliche Motivation zur intensiven Beschäftigung mit mathematischen Inhalten bieten." |