III.1. Negative Zahlen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
 
Um die Stellung der negativen Zahlen besser zu verstehen, kannst du ein bisschen am Zahlenstrahl herumexperimentieren. Ziehe den Punkt auf der Zahlengeraden nach links und rechts und siehe was passiert.
 
Um die Stellung der negativen Zahlen besser zu verstehen, kannst du ein bisschen am Zahlenstrahl herumexperimentieren. Ziehe den Punkt auf der Zahlengeraden nach links und rechts und siehe was passiert.
 
<br />
 
<br />
<ggb_applet width="890" height="324"  version="3.2" ggbBase64="UEsDBBQACAAIAKt5Rj8AAAAAAAAAAAAAAAAqAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wxZOJO9R5AMa/85vjN/exJDlzjntG7kxkzAwzjKYxxpFjUDIYx04xaBGraNJESM08kupR06hNbUW1bHSwHiqUDmlXtmM72J6OFY9t/4p9n+f9vM/nD3hrRVFhJLwZHgBA4odzxN/W8VvpWOQ3SnqHAgBAAlGkhPtNEQgECglgFECj0QQ0wKIRBAzAwwgcBknEAAKBQCKRKBSKMQlaRQTWFGBGgyy+g6hUqrGxsYWFhQ0N2KxA2pogHYwA3Rg4rwDuJsDZDMUwBe4WKC8zwDSHfMyBnwXwsYL8LcFaK+BvBa21Rq6zBn526EAb9Fp7NGs1IsgeF+SEDrEB620QbFvAswM8e8CjQzw6HOqC4bpieG6YcHsgcARCOhAw4CgnEOmMjnJDClzxke7kSCZmA5MmckGI3TFiD1QsA0pgIMTesNQTFeMLb2SSxZ6UBCZi0xpk0hoozg+bEIBNDsRu9DIW+5hE+5rKvKEtvpDMH50RgNrCwsjWYTOCsVkstGIdKjcIlchjpvC9MtbjctbDCjas4ODyeHglF97ORhdyMPmh2HwerjAMWxiBL+ZhSsPhMj5czMeq+DiVAFciJJRGEcpEBA6HIxAIhEJhljQkJ56TlxiWn8QvSo0oToso3Souz4opz03cGQnv3gBXRRNqRHBtLHFvNE4jwdZJcBopThOL12wiNmwiHkwmNiWTdEn41mR8q4ygSyW2Z5A75OSOLPJpOVGfSTqZSdZnk/U5lM5s8tlcSlce+Vw+5ed8cs82ygUl9fI2ak8h9VoR9RcVtbeYVpEdU6GIq8xL7CumXi+h9e+gDZTSBnbQNBX5DVXbtHXl2n3lbfvL9Y1larVaW1eh3Veh0+xsra860lDd3lRzvEXdodXoWxtOtzUajjb3Gg71XuzsvXjmeve5kVt9o4PX7wwN3Bu+8eDe8OTYyKOJ0SeTY8+eTM5MP/577t2H+bnl5WXwv+YIujUEAGiJzwmRqB79IFGEGxWYlr/bonxaqFD2HPTuit9Mo6GkPGdUQo0gL4NhGpImk1P5Ls8JmT+8inCmcavR3LKXap64LbX6dFD4SOWd2TXbzaMLlNrzV85feZt7ZUpHyfnMWl7O633xtiiUh4BGSlLKunE7/T/0ZDdd+jgIbjv5ZzVfPnZVnQWGZuXpS7x7FUimUWw34UaSHUEphZqD158vWKkc5c2xyj40NT7Y8OXZUcQ5iUgbMTa1ZIIRIV0Et5lRffhP9WMM+rzHeMSv1URObOEh0a02wOXfdl2duuTQdnWS7vRoqBm7/KblOGw/qPL4cXdBg0PLzOv20qr5uoWwy657K1bG4ReXmu2qEOaGtJnox6KWhTcYwxUYUsd/KoubYI3UhWqm5gC9AO8WzA+X9W46GPrx1DvlBJsdkRq8NdLJdASi1qaa4rrSZEViXamRkIjcIl+Vz6y859aJ6P+0KwO+s5IrXKSxsob7S1NUk7vDv6YgC9WM5494lf3T/R1Illva2NALfZud93L3YZc5la1fjsIjASu5yK7Yrgu7Hfcw1WZl5sHWKq57erEjv1xVSA18fexm4mvh6gyjQw8N7i8XT3ycPuVWfMDymAv/K+xYnkj50pKbbmJAeGmn8rPrLcOYsfjoWt8e8+lTz1oT6jzYu0+ymeyBk5WkF7PgpvmgavOok40ipBYpvdDrdU13Ytiqfvz+ALZ+129n775aYVvgKSxwJxb9NNvPCpQuTNnJO+Tf2wjOXyp9KJTvXFXSNHhkcAx1MfP+2C6M3x2nqeULVrRZ4qX9+jiT4ymeqreiP2Ww99et/fQ94/tf6rvf6z4v5iF3PVlH7lgYxxkYVMdsh/bAiRWf5q9dvXFJt9macI0V3xl1dSH9/qogxei+pIE9MzM7/NcoNDHhSR+g9/GddwNO/mV/OvZC5h/TJkI1W5WnR/9uedzQNRl82C6GP9/VaM2Qa2s9qj19hqSxZw3FT++OvEIsRlZtdM3YF1Mj/bq3tbF/D+2A5B/rpwkzyqONrn3/HYLPjeKcYcsq/wVQSwcIDw5ZqeoFAABCBgAAUEsDBBQACAAIAKt5Rj8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VzbctpIGr6eeYpeXUzFNWsstU6wYzKFbZKQOLazyczF1NwIqYEOOhCpcYSfYB9kquZB9k32SbYPEjqBjMA4EKpcQt2/Wt3ff+j/+yV8/mvsueAehREO/K6ktGQJIN8OHOyPu9KcjE7b0q8vfzwfo2CMhqEFRkHoWaQrqS0osfY5fvnjD+fRJPgKLJeL/I7R1640stwISSCahchyoglCpNBuzWPsYitc3A4/I5tEWYcYZODP5mTZaHvONY7oOQnnSDrjd5y5mFzhe+ygELiB3ZWgTudOv/2OQoJty+1KmixaYLWTNqmsdxKE+CHwCRPPBnetIXIpAh/JwkUA3LNeVXSNqDAAEX5AFC3I2s7POAjnaG672MGWzxbKp0iFAPiKHTLpSu0OuxvC4wkDDyaj2UEQOh8XEUEeiP9AYUAnrWktTTaNtmmqbbkjqxJYiB6lrbfMjqzobcPswLaqaxRfuhY6E63d0rU21Ayto7V1WTfoRWu7+J3R/UdECF1jBKwYRcnqwTjEzhJ2djKILgI3a5oF2CeX1ozMQ24hatLEkepKdI0hW2LPH7soaYNUfxNkT4dB/FHApoqhPy1m/BI+n+H4MnCDEIRMVzoVSI5DceQybKJLKZnLyFwiGYMNuuxXOpBL8ONQHIVysS+mlixcSVetyOltcARYAx2cGXaKDbeKriSBuY/JdXpCzWmarFQR8jdzb0gdKm9QyyGVdMgEz63HPD8r2dv5FIU+coVV+VSz82AeCdMV9+ITcZCNPXoqOhJELKat3+gERKuDxiFKJy7cUeDFe+W85Zaaz8/SSbA5RHSuNqFxha6HsLUwtyfU49g3xyKshfmNizxEnYpwc+DWtMSlJy2jS8ADRRm43NKoQKZ8GRZMiJ9b7mxi0Zm25NTLFzR25BfFB30fOMWljnCMHNGSaZSvPwJxVzrtsKC5oDdrtSXwIIIolxGewaJAFkGo3sR62cpjGh0jFnnT5VzQ6BvPutKL+EXvBPwM2i35n2BBv59IRXzOHgHuYkvg8l7FwdsWtBw+ytPhc7kOH3AKYEtuitLlAaIk0xhf+OwM2lUetF3gujoguDpPBJcdeJ7lO8C3PLreu8BdjAOfrxOzFARYMotCwFK4c1qQ26ClMjDEOuckFZvRixUhagnRoRC16UGjcVXcO7njCqzFvVMwxXDFHYtM6M7gU/XybZXkN9CCWgob1roYqavFGMnOl5pRmmimYH+FRUVozM6Wc7G+2YLqTe12NIoQEY7I7crYzA7lxAzb7Ejt7hTCllbOM2oWib74QiYS2z32aF5rY7I0LndB86yBT+jmj/hmWt3TpwjNWC51638KLT9iGXpxt9pcPcMDVU+NBuAyEAgNwOVQR4i/fXz4px5wmrqA0VKLEfl41eEcnzpOy/5wqrSPySOKGUc/nLr//Ssc0r9q7rEJytumHtl+0OZodurQt3zKqTjRoUR+JnZPEM0QEoQvhRfM6M04a85NNqc5uWVAQ1U7utGWoWkabY3fWmkZhqZARdY0sy2bKmuuyXDg4wlhv5RFK/K2NKN/CPwsg/AJmcarDKM+T5r7WybNrx6DKOOUe86Z98cwXufBymhZv7E9vT4YsJ6Q1L9Zh852BvXm4DB6Dg7WF8TqtSBWbwSxerWSg0EhioToWIhOBAcbNedgcJ9JQG0c3BMHQ99sQTsnmd8JzRofnwaOPK0sa2ByfBr4nonW6PjUUSFah154qOQlBMVESXKTn77MA/LLDRpTHnOPwB/WxEX+v0SrVM1I2KVScZx63ew5J1n5iIY/qo1QiEfZ42j+ANKQUtSTHTYiVkjuWJZSJEZ0C17Wy+WWfrKSIELhlcpmgGsFwO+CCG8HuLYD4LpyiIj3c4j384g/DiosgCqwBNQNp9RnqCR7RUAGPvLp3WjaR78VzPwfm6MON0bdDnwHi5oAlb5NhOkqs4rGCfhpTH4B8YurE/C///wNyp0u77wUnYsVVy7SK8udLu/snVQNIH22nj43fyb9aw08Tl+6nMLI0SqXS2r02mbWoa+yjhDZE7LaPGZFp2xgHvpezKNfZx6v6yygX2c7r47LPPp58+jnzaPeAgalYpeee2SssgjTjH0PDugZqJZmhJSAy4UP3LVmcZ2hNuDlr8GW1Yrrg6lWZHDBlrkrPm/z+GQ1nUHjitfbg8Fnj9b0bh1a29nUu8PDrLFJbVLzGohC1ltRyHonClnXK2teqhDFQvSzEJ2KmpfbvOalPgMf4w+8KqrYU80Lf7MFPVnNS28ZBa9MkTpMtlmrjc/Hp41K/euoy1/T41NApfx1CpWWcbwqcI9PBdV3Cw7dCVbyQaNY8/rt+rpB3cXYqu7CKi65EuRBEatBru4yaFZ3MQtIXmEEbuauC3BEwFfEaHVSaQF+YE9SXt2AT5t74dODOj79to4yX9eR7cFx8elBnk8P1vHpYpq6dM1Sohr3YhyJDHTBv5ZT1PePpaD59P795q/6HLjak0IrOzzhBphG33Vco1IWK3MNBnZRgau1dtNEazfbvgoEBVb8uJeqdBVCGuF2YWuXOLRdVILwvbD/myo9q0eRmjC2M/K1PitYvkkGm6QFB+4h1cAIazVeqQHXmsNmOCI8Rv49xSUIIwBiOX1TSk4TnbQlVlLvWyhJ04OSsyLPIiGOQS+V76VSPcgvZBbeU5NRe1o6WE/PWXo5R4pmyMYjaiH7Ccy3TVz8dru6i6FxVbPDUByeMRg+WnipBsN4JVJ3TZC62w6pJ42FT/RWqlnK+bcE+t/WogTzrbDLuwrSXj3SIR0phdFbHy6NbUjU9/7UrvC2ceJBZqJYuZbLleF8di63rd9+aOK3H74bv9X27LYfKkD7m7utv95tzX277TM+TX061r/Cb7WN3LYM5zcuglHLHmcanGFbvDc0wnRGwuAcXdVUraMYEJlQVjrQNJElK0PbtK2Oopp/XlDUYWvozcRksH9h2dNxGMx9pzLTHO31+Q/ouRI4A87/smTzCtZOvz/J9K88X0x4vIijFl+PwGiCgIN8kEMIeJjQNg/czf0pAQ9zgChaHvg0QZ7VoJ6j7vyW2LOVUOCyhKKuLaGU3idg5RSzUkE5y/8nBHae/iuVl/8HUEsHCOz+YToYCQAAfEUAAFBLAQIUABQACAAIAKt5Rj8PDlmp6gUAAEIGAAAqAAAAAAAAAAAAAAAAAAAAAABkNTM0MzQ5MTYyZTcyMDE5Mjc3ZWEwMWJjN2NhOTEzN1xCw6RyMi5ibXBQSwECFAAUAAgACACreUY/7P5hOhgJAAB8RQAADAAAAAAAAAAAAAAAAABCBgAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAkgAAAJQPAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
+
<ggb_applet width="608" height="331"  version="3.2" ggbBase64="UEsDBBQACAAIAFN9Rj8AAAAAAAAAAAAAAAAqAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wxZOJO9R5AMa/85vjN/exJDlzjntG7kxkzAwzjKYxxpFjUDIYx04xaBGraNJESM08kupR06hNbUW1bHSwHiqUDmlXtmM72J6OFY9t/4p9n+f9vM/nD3hrRVFhJLwZHgBA4odzxN/W8VvpWOQ3SnqHAgBAAlGkhPtNEQgECglgFECj0QQ0wKIRBAzAwwgcBknEAAKBQCKRKBSKMQlaRQTWFGBGgyy+g6hUqrGxsYWFhQ0N2KxA2pogHYwA3Rg4rwDuJsDZDMUwBe4WKC8zwDSHfMyBnwXwsYL8LcFaK+BvBa21Rq6zBn526EAb9Fp7NGs1IsgeF+SEDrEB620QbFvAswM8e8CjQzw6HOqC4bpieG6YcHsgcARCOhAw4CgnEOmMjnJDClzxke7kSCZmA5MmckGI3TFiD1QsA0pgIMTesNQTFeMLb2SSxZ6UBCZi0xpk0hoozg+bEIBNDsRu9DIW+5hE+5rKvKEtvpDMH50RgNrCwsjWYTOCsVkstGIdKjcIlchjpvC9MtbjctbDCjas4ODyeHglF97ORhdyMPmh2HwerjAMWxiBL+ZhSsPhMj5czMeq+DiVAFciJJRGEcpEBA6HIxAIhEJhljQkJ56TlxiWn8QvSo0oToso3Souz4opz03cGQnv3gBXRRNqRHBtLHFvNE4jwdZJcBopThOL12wiNmwiHkwmNiWTdEn41mR8q4ygSyW2Z5A75OSOLPJpOVGfSTqZSdZnk/U5lM5s8tlcSlce+Vw+5ed8cs82ygUl9fI2ak8h9VoR9RcVtbeYVpEdU6GIq8xL7CumXi+h9e+gDZTSBnbQNBX5DVXbtHXl2n3lbfvL9Y1larVaW1eh3Veh0+xsra860lDd3lRzvEXdodXoWxtOtzUajjb3Gg71XuzsvXjmeve5kVt9o4PX7wwN3Bu+8eDe8OTYyKOJ0SeTY8+eTM5MP/577t2H+bnl5WXwv+YIujUEAGiJzwmRqB79IFGEGxWYlr/bonxaqFD2HPTuit9Mo6GkPGdUQo0gL4NhGpImk1P5Ls8JmT+8inCmcavR3LKXap64LbX6dFD4SOWd2TXbzaMLlNrzV85feZt7ZUpHyfnMWl7O633xtiiUh4BGSlLKunE7/T/0ZDdd+jgIbjv5ZzVfPnZVnQWGZuXpS7x7FUimUWw34UaSHUEphZqD158vWKkc5c2xyj40NT7Y8OXZUcQ5iUgbMTa1ZIIRIV0Et5lRffhP9WMM+rzHeMSv1URObOEh0a02wOXfdl2duuTQdnWS7vRoqBm7/KblOGw/qPL4cXdBg0PLzOv20qr5uoWwy657K1bG4ReXmu2qEOaGtJnox6KWhTcYwxUYUsd/KoubYI3UhWqm5gC9AO8WzA+X9W46GPrx1DvlBJsdkRq8NdLJdASi1qaa4rrSZEViXamRkIjcIl+Vz6y859aJ6P+0KwO+s5IrXKSxsob7S1NUk7vDv6YgC9WM5494lf3T/R1Illva2NALfZud93L3YZc5la1fjsIjASu5yK7Yrgu7Hfcw1WZl5sHWKq57erEjv1xVSA18fexm4mvh6gyjQw8N7i8XT3ycPuVWfMDymAv/K+xYnkj50pKbbmJAeGmn8rPrLcOYsfjoWt8e8+lTz1oT6jzYu0+ymeyBk5WkF7PgpvmgavOok40ipBYpvdDrdU13Ytiqfvz+ALZ+129n775aYVvgKSxwJxb9NNvPCpQuTNnJO+Tf2wjOXyp9KJTvXFXSNHhkcAx1MfP+2C6M3x2nqeULVrRZ4qX9+jiT4ymeqreiP2Ww99et/fQ94/tf6rvf6z4v5iF3PVlH7lgYxxkYVMdsh/bAiRWf5q9dvXFJt9macI0V3xl1dSH9/qogxei+pIE9MzM7/NcoNDHhSR+g9/GddwNO/mV/OvZC5h/TJkI1W5WnR/9uedzQNRl82C6GP9/VaM2Qa2s9qj19hqSxZw3FT++OvEIsRlZtdM3YF1Mj/bq3tbF/D+2A5B/rpwkzyqONrn3/HYLPjeKcYcsq/wVQSwcIDw5ZqeoFAABCBgAAUEsDBBQACAAIAFN9Rj8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vxrctu6Ff7duwqUncnE01rmm1Jj5Y5sK4kSx3aa3Psj0z8UCUmI+NAlIUfyCrqQznQh3UlX0gOAlPiQaD0sh4pnMjSBQxD4zgPnO0R8/uvM99A9jmISBm1JacgSwoETuiQYtqUpHZw2pV9f/3I+xOEQ9yMbDcLIt2lb0hqqxNqn5PUvfzqPR+F3ZHtc5HeCv7elge3FWELxJMK2G48wprl2ezojHrGj+W3/G3ZovOwQg/SCyZQuGh3fvSYx3NNoiqUz/saJR+gVuScujpAXOm1JNWDu8NvvOKLEsb22pMuiRS13QpPGekdhRB7CgDLx5eCe3cceIPCZzj2M0D3r1UTXAIQRiskDBrRU1nZ+xkE4x1PHIy6xA7ZQPkUQQug7cemoLZlyE96GyXDEwNNkMZoThpH7eR5T7KPZVxyFMNNWq6HLltm0LK0pt2RNQnPRozTNhtWSFaNpWi21qRk64AtrgZnozYahN1Xd1Ft605ANEx5a28XfjO8/Y0phjTGyZzhOVo+GEXEXsLObXnwResumSUgCemlP6DTiFqIlTRyptgSIRmyJnWDo4aRNBf2NsDPuh7PPAjZNDP1lPuGP8Pn0h5ehF0YoYroyQCC59sWVy7CJLqRkLiNziWQMNuiiX2mpXIJf++IqlEsCMbVk4Uq6akVOX0NixBpgcGbYKTbcKtqShKYBodfpDZjTOFmpIuRvpn4fHCprUIshlXTIBM+dxzw/K9jb+RhHAfaEVQWg2Wk4jYXpinfxibjYIT7cio4EEZtp6zeYgGh18TDC6cSFOwq8eG/OcgvN52fpJNgcYpirQyGuwHooWwtzewoex35zbcpamN942MfgVJSbA7emBS4daRFdQh4oisBllgYCS+XLas6E+L3tTUY2zLQhp14+h9iRXRQf9GPo5pc6IDPsipalRvn6YzRrS6cmC5pzeFkDXPxBBFEuIzyDRYFlBAG9ifWylc8gOsYs8qbLuYDoO5u0pZezl50T9FdkNOS/oTn8fiLl8Tl7BLiLHYHLehUHb1fQMvgoT4fP5Tp80ClSG/K2KF3WECUZYnzuZ2/QrrKg7QPXVY3gMp8ILif0fTtwUWD7sN670JsPw4Cvk7AUBNkyi0LIVrhz2iq3QVtjYIh1TmkqNoGHFSFqC9G+EHXgokNcFe9O3rgCa/HuFEwxXH7HoiPYGQJQL99WaXYDzaklt2Gti5GGlo+R7H6hGWUbzeTsL7eoGA/Z3WIu9g9bULWp3Q4GMabCEbldmZvZoZyYocGuD+xprZG3x3SgTZaM/wiETCw2f+JDlusQujA1bw5ZVy+gkApgvrWWd/gxxhOWWd0GXyI7iFm+nt+7NldWv6bKqtCHuggLQh/qYqgjxN85PvxTfzhNHaLoDq3jVYd7fOo4LfrDqaIUFNI8HoXks5FuNPb++++oD//KeckmmO+aliz3iibHtlWlCzsAvsVJEJD8idhZUTzBWJDBFF40gZdxRp2ZbEaPckMzmoapW7Kp6Ipsgh+JlFoHRm8ouqYYutaSNaMy+1EfTxa7hQzb2pWBdOtA3ZYIPiEJebOEqMvz6e6O+fSbxyBa0s0Dp9OHIx9vs2AtGVt3a3t6WxuwnpDvv1uHzm4G9a52GD0HPesKzvVWcK53gnO9WUnPVCGKhehQiI4EPRtsT8/UQ2YElXHwQPQM/7AF7Z1x/pQMbHh8+vipMs6iPkbHp4+fmZENjk8dJUZW9wpFKWeheEaVJG958cc0pK9u8BAozj1GX+2Rh4O/i1apnK2wR6X8ONW6OXC+svLLDv/CG+OIDJZfsfl3S1NKUU9235jaEb1jGUyeM8H2vCizyw3jZCV3VIVXKpsBrucAvwtjshvg+h6AG0odEe9mEO9mEa8GtVfguWrmS5LGRtgu8+7V6NOInkZ8SL7l3I+6L1+5XqLW49S3tyNTua4NU1nCpTasffF5n8UHrKoprKq3Ndt9Xxt8DmhNH9ahtZtNfagfZlub1CZ8tydI7HtBYj8IEnu9ku9qQpQI0W9CdCz4rrc939WeId/ile+SKg7Ed8kPW9De+XwzyR+NhpnzyhSpemaTldr4dnzaKLHdZs3T+UoFjI9PAQt6m/rDqao0jrji4x2fCsofGevuBCsplpnntL9dX2/Bq8ydeBVjVJkSg/xcvErfgFf1MryqtzmvYmBYOSSvCEY3U89DJKboO2bntQNRMEBB6IzQRJDZP28OtrUx2E4YuER8fQXp20QYSOPy2/EJejGkrxBf8P/+9R9U7PR453vROV/x5Pzl9epOj3f2Tsp6T084y/VVu7HQu8Iy8co0deGahUR11pmRWGSgc/5rMUX9+FgKmk3vP27+lb/mak8KKezyhBtgGn3XcQ39Ma7BwM4rcLXWbrbR2s2uxwBUgRW/HqTqVIYQItw+bO2SRI6HCxB+FPZ/U6Zn1SiCCRNnSb7WZwWLQyTqNmlBzT2kHBjVSo2Xjm9WmsNmOGIyxME94BJGMUIzOT0lIaeJTtoyU1LvmytJ04OSsSLfphGZoU4q30mlOip/kFl4R0tG7ejpYB0jY+nFHCmeYIcMwEIOE5hvt3Hx293qLqbOVc0ufXF5xmD4aOGlHAxnK5G62wapu92QetJY+EQH0qxCzr8j0P+w5wWYb4Vd3pWQ9quRjmCkFEZ/fbg0dyFR20TLq6poeVkVLa+qomXnkGlk7qBh4kFWoli5kssV4Xx2Lrer337axm8//TR+qx/YbT+VgA42d9tgvdtah3bbbpXbvq3yzG6VT79Z4bZPx/pX+K2+kdsW4fzBRTCw7OFSgxPiiHMBAwIzEgbnGpqu6S3FVLGlykpLtSxsy0rfsRy7pWjWPy8AdbXR9ydiMiS4sJ3xMAqngVuaaYb2Bvz/1XIlcAacPVS+eQVrr6PnS/0rzxcTHi/iaLkizleCRxi5OEAZhJBPKLT56G4ajCl6mCIMaPnoywj79hb1HG3vUyDPVkJRFyUUbW0JJTlPYCTnCVg5xdqwcqbmQeenOxCY4BjcDSRZ7UxGL/6iyK8CHMArIaSmxbT0MMgWuKsHqaMdYwL09HW0TraO1snW0dZR1lJ9ZrWJGKtMJMLOiFbYyCR/YGgLGzEOYiPPuNvW2Ea6WRvprqu1nmX/lAK7T/8Wy+v/A1BLBwgvgLVeLgkAAL1FAABQSwECFAAUAAgACABTfUY/Dw5ZqeoFAABCBgAAKgAAAAAAAAAAAAAAAAAAAAAAZDUzNDM0OTE2MmU3MjAxOTI3N2VhMDFiYzdjYTkxMzdcQsOkcjIuYm1wUEsBAhQAFAAIAAgAU31GPy+AtV4uCQAAvUUAAAwAAAAAAAAAAAAAAAAAQgYAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAJIAAACqDwAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" useLocalJar = "true" />
 
<br />
 
<br />
 
</div>
 
</div>

Version vom 6. Oktober 2011, 15:43 Uhr

III. Die ganzen Zahlen; Addition und Subtraktion:   1. Negative Zahlen - 2. Vorzeichenschreibweise - 3. Anordnung und Betrag - 4. Addieren - 5. Subtrahieren - 6. Rechnen mit Summen und Differenzen


Erklärung

Um die Stellung der negativen Zahlen besser zu verstehen, kannst du ein bisschen am Zahlenstrahl herumexperimentieren. Ziehe den Punkt auf der Zahlengeraden nach links und rechts und siehe was passiert.



  Aufgaben

Frage 1 (! A) ( B) (! C)

Frage 2 (! 1) (! 2) ( 3)


 

Texttexttext einfügen 1 texttexttexttexttext einfügen 2 text.




III. Die ganzen Zahlen; Addition und Subtraktion:   1. Negative Zahlen - 2. Vorzeichenschreibweise - 3. Anordnung und Betrag - 4. Addieren - 5. Subtrahieren - 6. Rechnen mit Summen und Differenzen