Facharbeit Lernpfad Terme/Addieren und Subtrahieren von Termen: Unterschied zwischen den Versionen
K |
K (→Äquivalente Terme) |
||
Zeile 84: | Zeile 84: | ||
:= 3x+5x<sup>2</sup> | := 3x+5x<sup>2</sup> | ||
</popup> </div> | </popup> </div> | ||
+ | <br /><br /> | ||
+ | ==<span style="color: green">Addieren und Subtrahieren äquivalenter Termglieder </span> == | ||
+ | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Beispiel:</span>''' | ||
+ | 5•x+3•x= 8•x=8x | ||
+ | <br /> | ||
+ | 5•x-3•x= 2•x= 2x | ||
+ | </div> | ||
+ | <br /> | ||
+ | <div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>''' | ||
+ | Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält: | ||
+ | ::m•x+n•x=(m+n)•x | ||
+ | Gleichartige Glieder werden subtrahiert, indem man vom Koeffizienten des Minuenden den Koeffizienten des Subtrahenden subtrahiert und die gemeinsame Variable beibehält: | ||
+ | ::m•x-n•x=(m-n)•x | ||
+ | </div> | ||
+ | <br /> | ||
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 1:</span>''' | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 1:</span>''' | ||
Prüfe, ob die Terme äquivalent sind | Prüfe, ob die Terme äquivalent sind |
Version vom 12. August 2010, 14:16 Uhr
Addieren und Subtrahieren von Termen
Äquivalente Terme
|
Zwei Terme, die bei jeder möglichen Einsetzung einer Zahl für die Variable jeweils den gleichen Wert annehmen heißen gleichwertig oder äquivalent. Durch Anwendung der Rechengesetze kannst du einen Term in einen äquivalenten Term umformen.
Rechengesetze:
- Kommutativgesetz (KG): für alle rationalen Zahlen a, b gilt:
- a+b = b+a
- a•b = b•a
- Assoziativgesetz (AG): für alle rationalen Zahlen a, b, c gilt:
- a+(b+c) = (a+b)+c = a+b+c
- a•(b•c) = (a•b)•c = a•b•c
- Distributivgesetz (DG): für alle rationalen Zahlen a, b, c gilt:
- a•(b+c) = a•b+a•c
- für alle rationalen Zahlen a, b, c (c 0) gilt:
- (b+c):a = b:a+c:a
T(a;b)= 3a+(7b+2a)
- (KG)= 3a+(2a+7b)
- (AG)= (3a+2a)+7b
- = 5a+7b
Durch geschicktes Anwenden der Rechengesetze kannst du einen Term zu einem äquivalenten Term vereinfachen. Vereinfache nun selbst folgende Terme:
a)T(a;b)= 7a+(9b+6a)
b)T(a;b)= 2•(a•3)•b+4•(a•5)•b
c)T(a;b)= (3+5•x)•x
Addieren und Subtrahieren äquivalenter Termglieder
5•x+3•x= 8•x=8x
5•x-3•x= 2•x= 2x
Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält:
- m•x+n•x=(m+n)•x
Gleichartige Glieder werden subtrahiert, indem man vom Koeffizienten des Minuenden den Koeffizienten des Subtrahenden subtrahiert und die gemeinsame Variable beibehält:
- m•x-n•x=(m-n)•x
Prüfe, ob die Terme äquivalent sind
1:
T1 (x)= 5x-2x+6x
T2 (x)= 2•x•2+5x (äquivalent) (!nicht äquivalent)
2 :
T1 (y)= 4y-3•4y+15
T2 (y)= 3•5+2y-4y-6y
(!äquivalent) (nicht äquivalent)
3:
T1 (y;z)= 2y-3+z
T2 (y;z)= 5y•2+z+5-8y-8
(äquivalent) (!nicht äquivalent)
4:
T1 (z)= 4• -2z
T2 (z)= 6+8z-5•20%-z•9
(!äquivalent) (nicht äquivalent)
5:
T1 (r)= 3r-23 r+5-r
T2 (r)= 3•r•2 (!äquivalent) (nicht äquivalent)