2009 VI: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(layout)
(ergänzung)
Zeile 48: Zeile 48:
  
 
:{{Lösung versteckt|
 
:{{Lösung versteckt|
 +
*Bemerkung: Normalenvektoren sind gleich, d.h. die Ebenen sind parallel.
 
[[Bild:ABI_2009_VI_d_Lös.jpg]]
 
[[Bild:ABI_2009_VI_d_Lös.jpg]]
 
}}
 
}}

Version vom 4. Februar 2010, 10:49 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2009
Analytische Geometrie VI


Download der Originalaufgaben: Abitur 2009 LK Mathematik Bayern - Lösungen zum Ausdrucken


Gegeben sind in einem kartesischen Koordinatensystem des IR3 die Ebene F, die parallel zur x3-Achse ist und die Punkte A(-2|1,5|6) und B(0|3|0) enthält, sowie die Ebenenschar Ea: 2x1+2x2+x3-a=0 mit a ∈ IR.


a) Berechnen Sie eine Gleichung der Ebene F in Normalenform. [Zur Kontrolle: F: 3x1-4x2+12=0]

ABI 2009 VI a Lös.jpg


b) Die Kugel K mit dem Mittelpunkt M(3|-1|0) berührt die Ebene F. Berechnen Sie die Koordinaten des Berührpunkts und den Radius r der Kugel. [Teilergebnis: r=5]

ABI 2009 VI b Lös.jpg


c) Die Punktspiegelung der Kugel K am Punkt A ergibt die Kugel K´. Bestimmen Sie die Koordinaten des Mittelpunkts M´ der Kugel K´ und geben Sie deren Radius r´ an. [Teilergebnis: M´(-7|4|12)]

ABI 2009 VI c Lös.jpg


d) Zeigen Sie, dass die Ebenen E13 und E-3 symmetrisch bezüglich des Punktes A liegen, und berechnen Sie den Abstand dieser beiden Ebenen.

  • Bemerkung: Normalenvektoren sind gleich, d.h. die Ebenen sind parallel.

ABI 2009 VI d Lös.jpg


e) Die Ebene E13 schneidet die Kugel K in einem Kreis. Berechnen Sie den Mittelpunkt N und den Radius p dieses Kreises. Warum hat der Schnittkreis von E-3 mit der Kugel K´ ebenfalls den Radius p? [Teilergebnis: N(5|1|1) ]

ABI 2009 VI e Lös.jpg

ABI 2009 VI e 2 Lös.jpg


f) Die Kreise aus Teilaufgabe e bilden die Grund- und die Deckfläche eines schiefen Zylinders. Berechnen Sie das Volumen dieses schiefen Zylinders und den Winkel \varphi , um den die Zylinderachse gegen die Grundfläche geneigt ist.

ABI 2009 VI f Lös.jpg


g) In welcher Ebene der Schar Ea liegt der Punkt M´? Für welche Werte des Scharparameters a schneiden sich die Kugel K´ und die Ebene Ea in einem Kreis?

ABI 2009 VI g Lös.jpg