Lösung von Teilaufgabe b: Unterschied zwischen den Versionen
(→2. Bestimmung einer Stammfunktion von fa durch partielle Integration) |
(→2. Bestimmung einer Stammfunktion von fa durch partielle Integration) |
||
Zeile 26: | Zeile 26: | ||
:::: <math>\Rightarrow F_a( x ) = -e^{a + 2 - x} ( x - a + 1 ) + c</math><br /> | :::: <math>\Rightarrow F_a( x ) = -e^{a + 2 - x} ( x - a + 1 ) + c</math><br /> | ||
− | + | für Interessierte: [[Der Holzweg]] | |
'''Der Graph von''' <math>F_a \,( x )</math> | '''Der Graph von''' <math>F_a \,( x )</math> | ||
<ggb_applet width="767" height="459" version="3.2" ggbBase64="UEsDBBQACAAIADWoNzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZLj9s4DD63v0LwadpFHPmVB5BM0QcKFJjdHtL2sIcuZJtxtCNLhiTPOP31S0l2kpmddnso9hBYIinqI/mRyubV0ApyB9pwJbdREtOIgKxUzWWzjXq7n62iV9fPNw2oBkrNyF7pltltlMVp5OQ9v37+bGMO6p4w4U2+cLjfRlb3EBHTaWC1OQDYIN4zYVDO+oELzvTxY/k3VNacFcHHB9n1dnJStfUNN9N27u/rBLfv+B2vQROhqm20KBA5rr6AtrxiYhvlNEhSDCtfPFCiKHPag9L8m5LWmZ+d71FCiOHfAE+mTraZ+zg30FeC15xJF4zHgUaE3PPaHhBCUqBL4M0BsebFMnirlNL17mgstGT4E7TCu9NlnOQ0z5argq7zJI/IMWjSZRIvskWaLdZJkRbZCj0aBOyQLGO6oAldpqv1IltSmuGp7+v83XC3A2uxlIawAcyU0Ebz+pRxt/lg3ihxFnWKS/uWdbbXngbZKNrZo7sNE6ddkK9lI2CUJVimA1S3pRp2IXFZcP3p2PkjHk/ZvFVCaaIx0gJDa8ZvGb7exgE9WVFvQ73F6MM5PemTdeot/LcMX28luAzQxsCTKeqETtdwQ5wAnTv2TrkRrARkQ0R6ye3NtEHW3J4jdfZ/9G2JXXPJm5PL5Be53MwfEW5zC1qCCLSSWNhe9YbcOfqG0nkcNVS8xW1QjAlhrlifEUCQ1tBomHCHngvp8lp6Sd1H4s18AuEwGMRaWZwdGI91sbjetthXblUz6ySucQS0gF1lPRtk34Lm1SkzLHK34RX9eNGsiEcIfrAoPyQepfOcd1R/hzA4TroDw1WcjLRgRxwYlzF6b7+rerx5tDPCT5aWyxEMadmwjfyKlUaJ3sKuwgzKG1Ux62dnQDfOgoRSZzu4QeMWRzzsF3s+wLnTnh5AZ/LaA7JEgjGujmP2JgJLLLLPPI6WLsSI8xYgEHCyJR3G7Lv4xBCkVSjHfxYGHhcmjZfJKl25X16saV48UaUxtP+jTD6ZQXLRhtPb8lDxIOoB3yXjnrwJ5vu/GD58Q+dXV8MLsiVXA5kRRn4j+Ci+IC8JfL1yuzSmKB+c5GrmVBGZ/yuR+176rogu/f90aX8V6ekPs/lxvzdgHUXXnp+zRf5krulPk/IyxfPL4eBf0PEfxPU/UEsHCIzxCIhmAwAAcwgAAFBLAQIUABQACAAIADWoNzyM8QiIZgMAAHMIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAoAMAAAAA" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | <ggb_applet width="767" height="459" version="3.2" ggbBase64="UEsDBBQACAAIADWoNzwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVZLj9s4DD63v0LwadpFHPmVB5BM0QcKFJjdHtL2sIcuZJtxtCNLhiTPOP31S0l2kpmddnso9hBYIinqI/mRyubV0ApyB9pwJbdREtOIgKxUzWWzjXq7n62iV9fPNw2oBkrNyF7pltltlMVp5OQ9v37+bGMO6p4w4U2+cLjfRlb3EBHTaWC1OQDYIN4zYVDO+oELzvTxY/k3VNacFcHHB9n1dnJStfUNN9N27u/rBLfv+B2vQROhqm20KBA5rr6AtrxiYhvlNEhSDCtfPFCiKHPag9L8m5LWmZ+d71FCiOHfAE+mTraZ+zg30FeC15xJF4zHgUaE3PPaHhBCUqBL4M0BsebFMnirlNL17mgstGT4E7TCu9NlnOQ0z5argq7zJI/IMWjSZRIvskWaLdZJkRbZCj0aBOyQLGO6oAldpqv1IltSmuGp7+v83XC3A2uxlIawAcyU0Ebz+pRxt/lg3ihxFnWKS/uWdbbXngbZKNrZo7sNE6ddkK9lI2CUJVimA1S3pRp2IXFZcP3p2PkjHk/ZvFVCaaIx0gJDa8ZvGb7exgE9WVFvQ73F6MM5PemTdeot/LcMX28luAzQxsCTKeqETtdwQ5wAnTv2TrkRrARkQ0R6ye3NtEHW3J4jdfZ/9G2JXXPJm5PL5Be53MwfEW5zC1qCCLSSWNhe9YbcOfqG0nkcNVS8xW1QjAlhrlifEUCQ1tBomHCHngvp8lp6Sd1H4s18AuEwGMRaWZwdGI91sbjetthXblUz6ySucQS0gF1lPRtk34Lm1SkzLHK34RX9eNGsiEcIfrAoPyQepfOcd1R/hzA4TroDw1WcjLRgRxwYlzF6b7+rerx5tDPCT5aWyxEMadmwjfyKlUaJ3sKuwgzKG1Ux62dnQDfOgoRSZzu4QeMWRzzsF3s+wLnTnh5AZ/LaA7JEgjGujmP2JgJLLLLPPI6WLsSI8xYgEHCyJR3G7Lv4xBCkVSjHfxYGHhcmjZfJKl25X16saV48UaUxtP+jTD6ZQXLRhtPb8lDxIOoB3yXjnrwJ5vu/GD58Q+dXV8MLsiVXA5kRRn4j+Ci+IC8JfL1yuzSmKB+c5GrmVBGZ/yuR+176rogu/f90aX8V6ekPs/lxvzdgHUXXnp+zRf5krulPk/IyxfPL4eBf0PEfxPU/UEsHCIzxCIhmAwAAcwgAAFBLAQIUABQACAAIADWoNzyM8QiIZgMAAHMIAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAoAMAAAAA" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | ||
− | |||
− | |||
=== 3. Flächenberechnung, der sich nach rechts ins Unendliche erstreckenden Fläche, zwischen der x- Achse und der Funktion f<sub>2</sub> im I. Quadranten === | === 3. Flächenberechnung, der sich nach rechts ins Unendliche erstreckenden Fläche, zwischen der x- Achse und der Funktion f<sub>2</sub> im I. Quadranten === |
Version vom 23. Januar 2010, 21:08 Uhr
1. Eigenschaften einer Stammfunktion von fa
1.) Von verläuft der Graph Gfa unterhalb der x-Achse und ist somit negative. Daraus kann man schließen, das der Graph GFa in diesem Intervall streng monoton fallend ist.
Von verläuft der Graph Gfa oberhalb der x-Achse und ist somit positive. Daraus kann man schließen, dass der Graph GFa in diesem Intervall streng monoton steigend ist.
2.) Bei ist der Graph Gfa gleich Null ( Gfa = 0 )und das Steiguungsverhalten von GFa ändert für und das Vorzeichen. Deshalb kann man sagen, dass der Graph GFa an der Stell einen Extrempunkt, in diesem Fall einen Tiefpunkt ( Minimum ) hat, da sich das Monotonieverhalten von streng monoton fallend in streng monoton steigend verändert.
2. Bestimmung einer Stammfunktion von fa durch partielle Integration
Hilfe zur partiellen Integration
Definiere:
für Interessierte: Der Holzweg
Der Graph von
3. Flächenberechnung, der sich nach rechts ins Unendliche erstreckenden Fläche, zwischen der x- Achse und der Funktion f2 im I. Quadranten
- Hinweis:
Da die Nullstelle der Funktion fa bei x = a liegt, folgt daraus, dass die Nullstelle der Funktion f2 bei x = 2 liegt. Das heißt, man muss von zwei bis unendlich integrieren.
Der Flaecheninhalt, der sich nach rechts ins Unendliche erstreckt, betraegt e2.