Funktionsuntersuchungen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 33: Zeile 33:
 
Gegeben ist die Funktion g(x)=x<sup>2</sup>+3x-2. Bestimme zu dieser Funktion Definitions- und Wertemenge, die Nullstellen und den Scheitel. Beschreibe den Verlauf des Graphen und plotte die Funktion mit GeoGebra. Vergleiche anschließend die rechnerischen Ergebnisse mit der Zeichnung.
 
Gegeben ist die Funktion g(x)=x<sup>2</sup>+3x-2. Bestimme zu dieser Funktion Definitions- und Wertemenge, die Nullstellen und den Scheitel. Beschreibe den Verlauf des Graphen und plotte die Funktion mit GeoGebra. Vergleiche anschließend die rechnerischen Ergebnisse mit der Zeichnung.
  
 +
<popup name="Lösung">
 
D=<math>\mathbb{R}</math>
 
D=<math>\mathbb{R}</math>
  
Zeile 55: Zeile 56:
 
g(x)=(x<sup>2</sup>+3x+1,5<sup>2</sup> )-4,25 <br />
 
g(x)=(x<sup>2</sup>+3x+1,5<sup>2</sup> )-4,25 <br />
 
g(x)=(x+1,5)<sup>2</sup>-4,25    <math>\rightarrow</math>  S(-1,5/-4,25)
 
g(x)=(x+1,5)<sup>2</sup>-4,25    <math>\rightarrow</math>  S(-1,5/-4,25)
+
</popup>
  
  

Version vom 4. Januar 2010, 19:08 Uhr

Inhaltsverzeichnis

Funktionsuntersuchungen

Lineare Funktionen

Gegeben ist die Funktion f(x)=3x+1. Bestimme zu dieser Funktion den Definitionsbereich, die Wertemenge, die Steigung m und die Schnittpunkte mit den Koordinatenachsen. Plotte den Graphen der Funktion mit GeoGebra.



Quadratische Funktionen

Gegeben ist die Funktion g(x)=x2+3x-2. Bestimme zu dieser Funktion Definitions- und Wertemenge, die Nullstellen und den Scheitel. Beschreibe den Verlauf des Graphen und plotte die Funktion mit GeoGebra. Vergleiche anschließend die rechnerischen Ergebnisse mit der Zeichnung.


Ganzrationale Funktionen

Gebrochen rationale Funktionen

Trigonometrische Funktionen

Exponentialfunktionen