Benutzer:Neutert Jan-Peter: Unterschied zwischen den Versionen
K |
(/+kein Pkt in IV Quad/+grenzwerte) |
||
Zeile 9: | Zeile 9: | ||
− | Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorherzusagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar f<sub>a</sub> mit <math>f(t) = \frac{1}{4} t^3 - a t^2 + a^2 t</math>, a > 0 | + | Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorherzusagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar f<sub>a</sub> mit <math>f(t) = <math>\frac{1}{4} t^3 - a t^2 + a^2</math> t</math>, a > 0 |
Die Funktion gibt dabei die Durchflussgeschwindigkeit in 10<sup>6</sup><math>\frac{m^3}{Monat}</math> und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage | Die Funktion gibt dabei die Durchflussgeschwindigkeit in 10<sup>6</sup><math>\frac{m^3}{Monat}</math> und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage | ||
Zeile 127: | Zeile 127: | ||
::{{Lösung versteckt|1= | ::{{Lösung versteckt|1= | ||
− | + | ::<math>\Rightarrow f ''(t)= 0 \rightarrow \frac{3}{2} t - 2a = 0 \Rightarrow t = \frac{4}{3}a</math> | |
− | ::<math>\Rightarrow f ''(t)= 0 \rightarrow \frac{3}{2} t - 2a = 0 | + | |
− | + | ||
− | + | ||
− | + | ||
::<math>f ( \frac{4}{3}a ) = \frac{4}{27}a^3 \Rightarrow WP \left( \frac{4}{3}a / \frac{4}{27}a^3 \right)</math> | ::<math>f ( \frac{4}{3}a ) = \frac{4}{27}a^3 \Rightarrow WP \left( \frac{4}{3}a / \frac{4}{27}a^3 \right)</math> | ||
+ | }} | ||
+ | |||
+ | |||
+ | • '''''<span style="color: darkorange">Warum liegt kein Punkt der Funktionsgraphen von f<sub>a</sub> im Bereich <math>t \ge 0</math> unterhalb der t - Achse und inwiefern ist dies mit dem zugrunde liegenden Sachverhalt vereinbar.</span>''''' ''<span style="color: darkblue">Begründe dies.</span>'' | ||
+ | |||
+ | ::{{Lösung versteckt|1= | ||
+ | ::Es liegt kein Punkt im Intervall <math>t \ge 0</math> unterhalb der t - Achse, da es hier um '''eine Funktion mit realem Bezug''' geht. Läge ein Punkt bei der gegebenen Aufgabenstellung im vierten Quadranten, würde dies bedeuten, dass '''eine negative Durchflussgeschwindigkeit vorliegen würde'''. Dies ist nicht möglich, da es heißen würde, dass ein negatives Volumen an Wasser im Fluss ist. Deshalb ist kein Punkt der Funktionsgraphen f<sub>a</sub> im vierten Quadranten definiert. | ||
+ | }} | ||
+ | |||
+ | |||
+ | ''<span style="color: darkblue">Es soll das Verhalten von f<sub>a</sub> für <math>t \rightarrow \infty</math> angegeben werden. Des Weiteren soll begründet werden, ob die Funktionen auch nach den ersten 8 Monate <math>t > 8</math> noch eine sinnvolle Beschreibung der Durchflussgeschwindigkeit liefern.</span>'' | ||
+ | |||
+ | ::{{Lösung versteckt|1= | ||
+ | ::<math>\lim_{t\to\infty} f (t) = \lim_{t\to\infty} \frac{1}{4} t^3 - a t^2 + a^2</math> | ||
+ | |||
+ | ::(Höchste Potenz ausklammern!) | ||
+ | |||
+ | ::<math>\lim_{t\to\infty} t^3 \left( \frac{1}{4} - \frac{a}{t} + \frac{a^2}{t^2} \right)</math> | ||
+ | |||
+ | ::<math>\lim_{t\to\infty} \infty * \frac{1}{4} = \infty</math> | ||
}} | }} |
Version vom 1. Januar 2010, 23:32 Uhr
Funktion, Funktion, wie tief ist das Wasser ?
So wie im täglichen Leben Statistiken oder Tabellen erstellt werden, können auch in der Mathematik sogenannte Funktionen erstellt werden. Diese sind, ähnlich wie bei einer Tabelle, abhängig von zwei meist unterschiedlichen Größen. Bei den mathematischen Funktionen ist es so, dass einer bestimmten Menge auf der x – Achse, eine bestimmte Menge auf der y - Achse zugeordnet wird. Bei rein mathematischen Überlegungen handelt es sich bei den beiden Mengen um den sogenannten x – Wert beziehungsweise y – Wert. Bei Funktionen mit Einheiten, wie zum Beispiel in der Physik der „Waagrechte Wurf“, wird dem x – Wert die Einheit Länge in Meter gegeben und dem y – Wert Höhe in Meter zugeteilt. Jedoch ist zu beachten, dass bei Funktionen jedem x - Wert nur ein y – Wert zugeordnet werden kann. Es ist also nicht möglich, dass eine Funktion mit dem x – Wert x1 zwei y – Werte y1 und y2 hat. Der Unterschied zwischen einer Funktion und einer Wertetabelle ist lediglich, dass die Funktion eine graphische Abbildung der Wertetabelle darstellt. |
Mit Hilfe der folgenden Funktion kann man beispielsweise die Wasserstände eines Flusses vorherzusagen. Diese Beschreibung der Durchflussgeschwindigkeit sei durch die Funktionenschar fa mit t</math>, a > 0
Die Funktion gibt dabei die Durchflussgeschwindigkeit in 106 und t die verstrichene Zeit in Monaten seit Beginn der Vorhersage
(t = 0) an. Die Funktion berücksichtigt, dass es sich um einen Fluss handelt, der zeitweise austrocknet.
• Es soll bestimmt werden, abhängig vom Parameter a, zu welchen Monaten kein Wasser durch den Fluss fließt.
- Was fällt auf, wenn man mit Hilfe des Schiebereglers den Parameter a verändert? Im Applet ist die Funktion als f (x) definiert, nicht als f (t).
- Jede Funktion , unabhängig vom Parameter a, schneidet den Ursprung. Das ist die erste Nullstelle, welche der Graph besitzt. Sie ist also unabhänig von a Dies kann man leicht aus der Funktion ablesen, da man eben diese Nullstelle durch einfaches Ausklammern erhält.
- Die andere, wie man im Applet sieht eine doppelte Nullstelle, wird mit wachsendem Parameter a immer weiter vom Ursprung entfernt. Sie ist also abhängig von a. Löst man die Quadratische Gleichung erhält man die zweite Nullstelle.
• Es soll, in Abhängigkeit von a, ermittelt werden, zu welchen Zeitpunkten t ein relatives Maximum bzw. Minimum vorliegt. Diese Funktionswerte sollen berechnet werden.
Um die Extremwerte einer Funktion zu errechnen, wird die erste Ableitung benötigt.
Die allgemeine Ableitungsregel ist: n-1 |
- Bestimme nun die erste Ableitung der Funktion
- Errechne nun die Koordinaten der Extremwerte.
Um die t - Werte der Extremwerte zu erhalten, setzt man die Funktion f '(t) = 0
Da man nun die Gleichung einer quadratischen Gleichung hat, kann man mit Hilfe der "Mitternachtsformel" die beiden Lösungen ausrechnen. Setzt man die errechneten t - Werte in die Funktion ein, erhält man die Koordinaten der Extremwerte E1 und E2.
Am Besten sind die Extremwerte für a = 3 zu sehen. Da sich hier die Koordinaten ( 6 / 0 ) und ( 2 / 8 ) ergeben.
Man hat nun die Extremwerte in Abhängigkeit von a ermittelt. Um nun zu prüfen ob es sich bei den Extrema um Maxima oder Minima handelt, kann man hier anhand verschiedener Lösungen vorgehen.
ist Minimum ist Maximum
|
• Es soll, in Abhängigkeit von a bestimmt werden, wann die Druchflussgeschwindigkeit besonders stark absinkt. Dieser Wert soll zum Zeitpunkt t berechnet werden.
Dazu schaut man sich die erste Ableitung näher an. Diese zeigt einem die Steigung des Graphen Gf. Im Applet ist die Funktion als f '(x) definiert, nicht als f '(t).
Da es sich bei der ersten Ableitung um eine nach oben geöffnete Parabel handelt, ist das Minimum des Graphen gleichzeitig der Punkt, an dem die Steigung besonders stark abfällt. Wenn man von der Funktion f (t) ausgeht, ist der gesuchte Punkt der Wendepunkt. An ihm besitzt der Graph Gf den größten negativen Wert. Errechne diesen Wert.
• Warum liegt kein Punkt der Funktionsgraphen von fa im Bereich unterhalb der t - Achse und inwiefern ist dies mit dem zugrunde liegenden Sachverhalt vereinbar. Begründe dies.
- Es liegt kein Punkt im Intervall unterhalb der t - Achse, da es hier um eine Funktion mit realem Bezug geht. Läge ein Punkt bei der gegebenen Aufgabenstellung im vierten Quadranten, würde dies bedeuten, dass eine negative Durchflussgeschwindigkeit vorliegen würde. Dies ist nicht möglich, da es heißen würde, dass ein negatives Volumen an Wasser im Fluss ist. Deshalb ist kein Punkt der Funktionsgraphen fa im vierten Quadranten definiert.
Es soll das Verhalten von fa für angegeben werden. Des Weiteren soll begründet werden, ob die Funktionen auch nach den ersten 8 Monate noch eine sinnvolle Beschreibung der Durchflussgeschwindigkeit liefern.
- (Höchste Potenz ausklammern!)