HA: Unterschied zwischen den Versionen
Aus RMG-Wiki
Zeile 25: | Zeile 25: | ||
[[Bild:möööööp.png]] | [[Bild:möööööp.png]] | ||
− | === | + | ===Arbeitsblatt 3/Nr. 5=== |
− | + | [[Bild:mööp.jpg|800px|Lösung komplett]] | |
d) Für welchen Wert von a liegt zwischen G<sub>p</sub> und G<sub>g</sub><sub>a</sub> keine Fläche? Welche besondere Lage hat dann G<sub>p</sub> zu G<sub>g</sub><sub>a</sub>? | d) Für welchen Wert von a liegt zwischen G<sub>p</sub> und G<sub>g</sub><sub>a</sub> keine Fläche? Welche besondere Lage hat dann G<sub>p</sub> zu G<sub>g</sub><sub>a</sub>? | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Version vom 11. Oktober 2008, 07:29 Uhr
Inhaltsverzeichnis |
Hausaufgabe 9.10.2008
Arbeitsblatt 3/Nr. 2
Die Parabel -1/4x²+2x schließt mit der y-Achse und der Tangente im Kurvenpunkt P0 (6;?) ein Flächenstück vollständig ein. Wie groß ist diese Fläche?
- Lösung
1. Tangente
f'(x)=-1/2x+2
f'(6)=-1 =>y=-1*6+t
f(6)= 3 => 3=-1*6 +t => t=9
y=-x+9
2. Flächenberechnung
Arbeitsblatt 3/Nr. 5
d) Für welchen Wert von a liegt zwischen Gp und Gga keine Fläche? Welche besondere Lage hat dann Gp zu Gga?
Hausaufgabe 6.10.2008
Aufgabe 1
1.Bestimmen der Schnittpunkte:
f(x)=0;
a * x - b * x3 = 0;
x (a - b * x2)=0
--> Mitternachtsformel: x1= 0; x2= ; x3=
2.Berechnung des Integrals:
F(x)= = ... =
I.
II. f´(1) = 0 ; a - 3b = 0; a = 3b eingesetzt in I.: b = 1 → a = 3