Wasserbehälter im Dach einer Mühle: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Änderung 58127 von Maria Eirich (Diskussion) rückgängig gemacht.)
(Änderung 73195 von Karina Hetterich (Diskussion) rückgängig gemacht.)
 
Zeile 1: Zeile 1:
 +
=== Aufgabe ===
 +
In dem kegelförmigen Dach einer Mühle soll in ein zylindrischer Wasserbehälter mit möglichst großem Volumen aufgestellt werden. Das Dach hat eine Höhe von 2,5 m und unten einen Durchmesser von 3 m. Welche Maße muss der optimale Zylinder haben?
 +
 
<ggb_applet width="1000" height="600" version="4.0" ggbBase64="UEsDBBQACAgIACBv1kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwE+CcH2iVBORw0KGgoAAAANSUhEUgAAAMgAAABjCAYAAADeg0+zAAAJBUlEQVR42u1dS28bVRQO/If+BrZs2LFjxY5FN9AFVAWhLugGFdoUKOoCIVCpKlpBEW2BQiVCaUnT0rRpmkeT2HnaSZw4jh2/k0z8iGM3jgk0PfjeMMYe24nt8YzvzHyfdDSjRKrT8fnueXzn3mkjwFDIZrN4CBpDSmbp2PlH/L4NjwMASvFTzxK/RhJZEAQAlBhyx/n1oyt2EAQAKuHVD24ixQKA/QCCAAAIAgAgCACAIAAAggCAVQmSDnspt5Hg91tJiV+z8RV+fbazg29EJaQtiWK5GL8CBiTI/O+XqPfUG7TQeYXGLrbzn01c+pTs549TxHYf34hKdIW66ILrAh3uP0ztY+00Io3Qcftxfg8gxQIAYxMkFXBTOrpEf6XXeYolp1kAAILkMddxkYIDnTytYilW76nX8S0AIIhosN28Zrwvqw0ZMQiiAzaCHvrtm7OUifrhAQAIokRo+C75XQ4KDd2FBwAgSDHS+eixEfZSNrZMG4EFirsn4QUACCIjOtrDydF96wa/Ru099Hf2CTwBAEEitm7KLPs5MfrudfGrTBIAsDRBWJRYdQ4VSFFs0dGHiCKAtQkiOYfpyWqoQIr5SXsJSSL2B/AGwJoEyaXilPTNlhBCrkFk49ElsQqPAKxHkGB/Z1laxdq8yp+FR7rhEYC1CLK5FqF1RfSoZknvDKX88/CKOjAWHKMTV06AIIatPaaHK5JBmWLJxkREoHac+/Uctb3bBoIYEWykJB3x1UUQJiKuzY7C8+tAIBMAQYyIsK27ptSqUi2y8/QfeH6NcCQcIIjRsDZrL4yUVDJlm7fYnkhhWpnsh+fXiNR2CgQxEtjqvzI1sGeUqJZiybYy1U/bmRS8vwbY1mwgiJGw6nhcIgrWG0EwgoIIYlqCsJER1qptpPZQmjQzwtvEACKI5Qrz4mHF/Qp2ABHEFGCrfXx+sibH368GkS0+N0GZ5QBYsAfQxTJK7TE12JTUqnzatwdt3z0AHcQAYEV5ammuZqevNItVte27GuTTwAAIYlhIs7a6okKtKVZhHN4G8bAa3Ck3CCI0OfKre7WREjVt3hKLr1B0vBdsqJTaZldBEFHBVvXEwpQmtUdZLTLWi52HFYA2r8BY97n2FQXVtHkrFexAKXJPcyCIiGCjIAmPoyFHr7cGkY3NeGHnYSn6lvtAEBGRWJzWJbUqH0HB/vViQCgUNHpk6izMG23zKi3ld/M97sAuIBQKiPDQHVVRoNEUCyMo6GKJ/4U4HlNiwaHKwetu8yp3HgY9OLb0P0AHEQxsDL0VtUe5eHgf4iEIIhZWJgf4UKJa5260zVtsW4lV3ihAioUUS5jCnKVXzVj91dYghbavy2558RBCoSip1dhDIVIr5QiK1WsRtHkFADs+tJ5pXS3bvEqLucYsLR5CKDRhYd6sFKuwPdc5hAgCgrQGrChv9kCi2jav0taXXJbdeQihsNVdkslB8WqPSuKhzZriIbpYLQQbRsyEFpvuzM1o8yqNRzqPw3IEgQ7SSoIsODRZ7ZtdgxSiyPA9y4mHIEiLwETBJ00QBfU09vcGHt1EigWCaAu2Cic9Ts0cuZlt3rJjS/PEtpJ4iCK9BWD7zNkoh1ZOrFWKJY+ghAZuW4YgaPPqjGaOlFQzx/CApv8+b0tbRDyEUKgzkj6XoeqOqgq7e8ISBCneky5tSRTLxcoKePYzb9oLgqjFbqvUqbnzatHmVVo6tGgJ8bB4WLEr1EU7z3bobuguv16av0TbO9uUyCXo7PRZEER1Phv06LK6a1mDlI6gmP9ERnSx9CJHwN3QET6NWDLi1+VzMtEl/v8yM6CD6IRGj/BpqBXrdetXi7hGTS0e4mxeHRCbG9e1gNYrxSpsrJpRv6mora0NBLEiQdjquu6d0dVhtW7zlkWR/AJgVvEQQqHGWGcboTQUBUWwrYTEFXYzAkKhhmCioDQ9pLvD2h490P0zpXyaZcYogj3pGiITWdJ0pESUGsTMr1BABNEITBRMqzg+1Aht3rLPzddaZntzLiKIRmjlSImebV6lhQa7TOVEEAo1ih4ZnURBYVIseQQlvJg3r2mcCEKhBmjVqwta1eatVLCbRTyEDqJB9NhKSqZu6+5riVXTvEIBBGki2KoZn59ouYO2os1blmpFvKaIIhAKm9nWXQ5QLrnWcudsZQ0iG3sObGMY2rwgCMfT7Rylo0tCpDitavOWHTjnmTa8eIg2b5OQbpEoKFqbV7l/nY3aIIJYnCBsldwU6AgfEVKswoFzUpiP3CCCWJggIkUPEdq8yhEUNnKDCGJRgrCW5uZa1Npt3f0OnJMihh1BQRdLJRKLTuEcUoQ2b1nB7nNBB7EaQdhIxR8dYeq45hfKTrdfF+5v+uSk15BRBARRAdahufGzn3wzEaFsbtwn3N/0/nsL/FQXowGzWA2CiYKsABWRIFPDc0ISZCu5xs/TMhIwzdsAmCiYcO++FUomyJ0bAXKOhPn9onPX5Ht7X4jfs+vkUJge94QKv9PCGX+53CEkQfixpfnnxp4f2rwmJghbBdk+7GKC3Lzup4tf+ejIm/P08Ycebu+8NU8/fLtEx44u8Pujb7v5778+6yv8Tgtn7OroFpYg7LkZKYoUHz0KgtQAJgqu+/5/I62IKZaIJhOEj8KwM8IMcvg1Dq9uoDAvFgVFJIjeEUROIWXrvRPk14nBUOG+mCBGev86hMI6C/ONUOn5uiISRO8ahKWO7Pr9RR+vqz4/4yX3ZITOf+Gj7lsVCJI39l54Ixx+DaGwDrBVj61+ohNE1C5W2YmMs6PQQcxCEHZ6IBuZUH7JIEjjBMnGVppybCl0EAEIsjzRV3GEAimWGoIsU3xhCgQxOkHYKrcZixqGICK3ect2Hq7HhN55CKFwH7B91ewdGNWG8NDmVUeQ3UHGWWH3r0Mo3G8Fya9um3tMqYpIkPudfYYiCBMPl8cfQSg0GkHY9CnbV501GEFEq0EYYQ++doXGB3ur76P3OIWc9oVQuAdWJvopOHibggOdVe3HL7vp8md/CmUHX3yZpl45JIx998JL9Oy55+nWkUNVn2Mo/5yTZ04SnT4tll29akpyHDhwgP4FuECUkerje3gAAAAASUVORK5CYIJQSwcIpniIF0MJAAA+CQAAUEsDBBQACAgIACBv1kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAgb9ZAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1b23LbNhq+Tp8Cw53ptLuWjDPJVE4nacZJZuI6ib3Zbi+2Q5GwxJgiVZKy5Uwv9mH6DL3auzzAvtL+AEgdLImWZNm1d3IADz8B/N/3nwBSne/HgwRdqLyIs/TAIW3sIJWGWRSnvQNnVJ61POf7Z191eirrqW4eoLMsHwTlgcO1ZBwdOMxnIeMRbxEqeIszJlvds0C2qMsDSt2zKOCug9C4iJ+m2Y/BQBXDIFQnYV8NgrdZGJRm4H5ZDp/u719eXrbrodpZ3tvv9brtcRE5CKaZFgdOdfAUupt76JIZcYox2f/p6K3tvhWnRRmkoXKQVmEUP/vqSecyTqPsEl3GUdk/cDwMavRV3OuDTlKf7GuhIQAyVGEZX6gCHp05NTqXg6FjxIJU339ij1AyUcdBUXwRRyo/cHAbEw8ziV1KOKeeJ1zPQVkeq7SspEk16n7dX+ciVpe2Y31kxuQOKrMs6Qa6T/Tbb4hiitGebohtKDRS2lvYXsPMNtQ23DbCynD7OLei3MpwK8OZgy7iIu4m6sA5C5ICMIzTsxz4m5wX5VWizHyqC1P9yR7oVMSfQZhqUC3oMPE9vMex+Wd1nlGQzIxY5qMNB6yH83253nD0VgqylerRVerJhgGtvuvoR8TMeALvmb/m38KIrEnF6yPa89sNKPm9qNjZr92jU3kEKvpatrKaUg0K7SPMR8LXpk6QAH+QLli2QMSHxqUIPAARgbiAU+IhqVsXMRducMSQh7QcYcg4hPDgP+6aziQS0Jm+6oIfIgIDcSQYIsaPOALvQcYXwS8pAwkhkICH9PCE6i6YRFzCGfMQhzlqN3QJCDJ4EM5heIoYQUw/TFxEJZK6P8K1e0tPTx26pEhiJInuEDwZvNh6MMh7iGltZAVXnA5H5RxE4SCqD8tsOOECpCEGTWOdjUlzofBJJwm6KoHscKKZROgiSLQ3mIHOsrRENYnUXuvlwbAfh8WJKkt4qkCfgovgbVCq8SFIF/XYRjbM0uJdnpU/ZMlokBYIhVmCJ3POEjJzTCezhhM2c4PP3hAzN+TMsbt03AzuoFGhYPwsL2rxIIreaIlpWAAkj9Pk6kWugvNhFs+r0dk3iaajRmESR3GQfgRj1aNoXFCdd0yYqvMO93k9kSyPTq4KsGA0/lnlGdg/89rcp4wL+OPDmYOu7B242sbSlZ7wmZS+IJBmizBIjAeRthA+wYT6rgvhHx6qb0nRlhL7xAWfwL7w7cjqYkJQMFYT3Xu59utKb33ypniRJdNLRvsfgmE5yk3BAGEx1zo9T3uJMhZiAi1k4/C8m41PrGkw29fp1RDOsJ1At2dQRxAZqBAgULVd2xoZPbOJFDYy2Ejg2tbiaHKf+NRImLZrWyMFxmunVmlKajUJroeJCxPPsDPnNcbydW4fpXH5tj4p4/C80pRY+R9Hg67K50170ifZXZ961lBnFOVPusoQjjn+58zxaV+VgTmnTPie64JNeNT3PGun1yy0c67yVCWVQ4AtjLJRYf17ZtBIhfEATu2NCtJA0/130MBejVQvV7XiiSnmLODmLp619YXLpqvDPBu8SS9OwZauTaCzX8+yU4R5PNQmi7qQRM7V1CpB9wByUDT7nPZggDzUuQbwLTW2R1/+00+0h4/Kfpabqg0CE7RGfjAI0gilJnm9SUtAH6KgMw2oAYSm8XPgFTqAyHRlDo0O2aisBY7tpKvedFhI1AAqP1Qa4zf+M7GCY9O7phtl3U8w2jRLWgFjM3aI7qeJpeu027NN1zZBMuwb4itQk+BK5XMwmw6PsmgJJwUa20fR1YHTMgef7crAlsZ6ytqR50K/vXqNTTAxq+0Cnu+M3suwvA7g800AfL4dgLBysaGCTgPOuhgen50VqtSQtSgzkDUiHKTgPcYGIcgPdffawYdK2dBglYKDIQxnIupcmqrZabGKnrth5yiOhksIem4N/XiBo6NNODpa5GguFM4ovBMjnxJErUXT9TygRXQYXQNjuhXGJ6qnr1+D+GgVxHkQxaOiGeei6rJGsnpmK5eYza6wGtzGHYhn4GNiKd5kVcQxsH+eHWmSr0soJM9hhVyYQqPyFWyPXsdRpNJJv+rX1D5T2DQaD4ZJHMblBNhEu9ckrINDVhltCse5UkNdohynp3mQFnrjYyEZrWL3OIeM0svSIHkLs19O8vJ41wuaSdZoTLgD4Vuzi3eRLlrkWkAy3rOaPlrTtzl7myUVC+ccwi83iVYv7z+j3FXOqOMZrRxs1xk9uQKDX5UyUEAr5Oe4eGfvR/Z+AA0s5bo3EWRHqhl452xrZhsnISKYoVWQBdchm3F6Fo9VNB9xZrFtDuzRdim0Yfa3rhNZ5ffNUfsWbn8nQbsZ5iXB9c+CuUUr522tlx4fF9DdhwP0As7uXeWxe6hCliXEaSE5F4jfb5IU32/HV72vs2ndMVNTuk0l5W7TJW5T/drGI4JjwiVzpVxrOcC3Sp+NBeP7poIx3KBeDB9subgM7XsuH1ft8YQW/cVC8nATnzl8OHs7ADanWAhKGcGU+ELWC10XY59i5gmgQvicVoYudlgnNhr6oYU6XIBabWDk6oEY+WQLbZqyF/B9ICbetbirBdxfbWLir+7ZxGf3GnwLNV83/kBS8D1JgAPKuSDYr/YeXEEZkCSp8An3BDfEMbi80+21PM/y5TH+aIGC15tQ8PoBRRnadokvGfG48D3BZL09ekcbysuWn68tqK/s8vLQLi/fL0D881VSwX9uJXtWsg8NB7f4hWy2IjX93duidPVW3X2uSc+3qwm33We8Ib1JF8oJKqT0CZbUda/vTVEXewxT6WLfpdR/RBV+Mwu9+2VhGoEJ32hzvc6NtM2ZTyUDnnwXu1R/KmYZIsz34JrkhBIq/ce0CGumqH8DRXe2H89s/CVLGSIrQ8A8bc2eBSEHSkqCBaa+K3zhM9LAm3hUvOks8FBC3KS0XOE/j2tzaIMXY4u5O29OzQvvxLbyvh3sXFD79pEsr1Ab3obRhSLqRoIfnGONhzlMTG/JVDB/cBBcPHC+yfcQ/taZr2X3byhyP+zgleZt3sdMWVrGzg5L3EXcPla4/fff6K8o/9c39Fto+8sgS0cDlcehM31SDwnjjOrX1m3iwSrU883Hyb702PprYrLGTLNkhuOPm3KsH79FtDVbw9u6qqzX7azJV8s8CNXqVLnCNJagvvvF0PIQahjRQfTDQhCNNwui8f1S0xAml8E5W+nTtpSMSowZoxQTudaOy8P8pGA5qS9Xbht8+aN/w67ZdVrtI7eucbbyuXoDh3nrRV567eOc6RbNDZ+LiMfD7fEqdx3/QjdjVj+wFa+3L3yqMmb9tfv/dd1zSqqk+PWvo6z87mUQ9lGk8q//QvB39mtUe8NZzI+lGk8JPd1yLXKnHzA86QTdIktGpToJc6XS+tddyORDZj8HE94aKNE5lP4RFIXKu6r/5fcEuFkToS0t/i5302A6ZZCX5rWsVfDVUp+xSNE1qqxTNodUjg6QPUJ/Q/myKmseI3avq6HtIPqwokizG050jaL5lM+B9HEWpI83g8T/5GpnLZReLN+Vo9Mvkm/ASMxjpH+Bo9I1XU08RIQaYpFwbbUhFzxsre+gGwrpF815eX6N8+LhvKxZsVqBZYlPPOpzX/+GlXuc7GS1sj/7Ywzzi6nqJ7/P/gdQSwcIPHIdXboKAACPPAAAUEsBAhQAFAAICAgAIG/WQKZ4iBdDCQAAPgkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICAAgb9ZARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACHCQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIACBv1kA8ch1dugoAAI88AAAMAAAAAAAAAAAAAAAAAOUJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA2RQAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 
<ggb_applet width="1000" height="600" version="4.0" ggbBase64="UEsDBBQACAgIACBv1kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwE+CcH2iVBORw0KGgoAAAANSUhEUgAAAMgAAABjCAYAAADeg0+zAAAJBUlEQVR42u1dS28bVRQO/If+BrZs2LFjxY5FN9AFVAWhLugGFdoUKOoCIVCpKlpBEW2BQiVCaUnT0rRpmkeT2HnaSZw4jh2/k0z8iGM3jgk0PfjeMMYe24nt8YzvzHyfdDSjRKrT8fnueXzn3mkjwFDIZrN4CBpDSmbp2PlH/L4NjwMASvFTzxK/RhJZEAQAlBhyx/n1oyt2EAQAKuHVD24ixQKA/QCCAAAIAgAgCACAIAAAggCAVQmSDnspt5Hg91tJiV+z8RV+fbazg29EJaQtiWK5GL8CBiTI/O+XqPfUG7TQeYXGLrbzn01c+pTs549TxHYf34hKdIW66ILrAh3uP0ztY+00Io3Qcftxfg8gxQIAYxMkFXBTOrpEf6XXeYolp1kAAILkMddxkYIDnTytYilW76nX8S0AIIhosN28Zrwvqw0ZMQiiAzaCHvrtm7OUifrhAQAIokRo+C75XQ4KDd2FBwAgSDHS+eixEfZSNrZMG4EFirsn4QUACCIjOtrDydF96wa/Ru099Hf2CTwBAEEitm7KLPs5MfrudfGrTBIAsDRBWJRYdQ4VSFFs0dGHiCKAtQkiOYfpyWqoQIr5SXsJSSL2B/AGwJoEyaXilPTNlhBCrkFk49ElsQqPAKxHkGB/Z1laxdq8yp+FR7rhEYC1CLK5FqF1RfSoZknvDKX88/CKOjAWHKMTV06AIIatPaaHK5JBmWLJxkREoHac+/Uctb3bBoIYEWykJB3x1UUQJiKuzY7C8+tAIBMAQYyIsK27ptSqUi2y8/QfeH6NcCQcIIjRsDZrL4yUVDJlm7fYnkhhWpnsh+fXiNR2CgQxEtjqvzI1sGeUqJZiybYy1U/bmRS8vwbY1mwgiJGw6nhcIgrWG0EwgoIIYlqCsJER1qptpPZQmjQzwtvEACKI5Qrz4mHF/Qp2ABHEFGCrfXx+sibH368GkS0+N0GZ5QBYsAfQxTJK7TE12JTUqnzatwdt3z0AHcQAYEV5ammuZqevNItVte27GuTTwAAIYlhIs7a6okKtKVZhHN4G8bAa3Ck3CCI0OfKre7WREjVt3hKLr1B0vBdsqJTaZldBEFHBVvXEwpQmtUdZLTLWi52HFYA2r8BY97n2FQXVtHkrFexAKXJPcyCIiGCjIAmPoyFHr7cGkY3NeGHnYSn6lvtAEBGRWJzWJbUqH0HB/vViQCgUNHpk6izMG23zKi3ld/M97sAuIBQKiPDQHVVRoNEUCyMo6GKJ/4U4HlNiwaHKwetu8yp3HgY9OLb0P0AHEQxsDL0VtUe5eHgf4iEIIhZWJgf4UKJa5260zVtsW4lV3ihAioUUS5jCnKVXzVj91dYghbavy2558RBCoSip1dhDIVIr5QiK1WsRtHkFADs+tJ5pXS3bvEqLucYsLR5CKDRhYd6sFKuwPdc5hAgCgrQGrChv9kCi2jav0taXXJbdeQihsNVdkslB8WqPSuKhzZriIbpYLQQbRsyEFpvuzM1o8yqNRzqPw3IEgQ7SSoIsODRZ7ZtdgxSiyPA9y4mHIEiLwETBJ00QBfU09vcGHt1EigWCaAu2Cic9Ts0cuZlt3rJjS/PEtpJ4iCK9BWD7zNkoh1ZOrFWKJY+ghAZuW4YgaPPqjGaOlFQzx/CApv8+b0tbRDyEUKgzkj6XoeqOqgq7e8ISBCneky5tSRTLxcoKePYzb9oLgqjFbqvUqbnzatHmVVo6tGgJ8bB4WLEr1EU7z3bobuguv16av0TbO9uUyCXo7PRZEER1Phv06LK6a1mDlI6gmP9ERnSx9CJHwN3QET6NWDLi1+VzMtEl/v8yM6CD6IRGj/BpqBXrdetXi7hGTS0e4mxeHRCbG9e1gNYrxSpsrJpRv6mora0NBLEiQdjquu6d0dVhtW7zlkWR/AJgVvEQQqHGWGcboTQUBUWwrYTEFXYzAkKhhmCioDQ9pLvD2h490P0zpXyaZcYogj3pGiITWdJ0pESUGsTMr1BABNEITBRMqzg+1Aht3rLPzddaZntzLiKIRmjlSImebV6lhQa7TOVEEAo1ih4ZnURBYVIseQQlvJg3r2mcCEKhBmjVqwta1eatVLCbRTyEDqJB9NhKSqZu6+5riVXTvEIBBGki2KoZn59ouYO2os1blmpFvKaIIhAKm9nWXQ5QLrnWcudsZQ0iG3sObGMY2rwgCMfT7Rylo0tCpDitavOWHTjnmTa8eIg2b5OQbpEoKFqbV7l/nY3aIIJYnCBsldwU6AgfEVKswoFzUpiP3CCCWJggIkUPEdq8yhEUNnKDCGJRgrCW5uZa1Npt3f0OnJMihh1BQRdLJRKLTuEcUoQ2b1nB7nNBB7EaQdhIxR8dYeq45hfKTrdfF+5v+uSk15BRBARRAdahufGzn3wzEaFsbtwn3N/0/nsL/FQXowGzWA2CiYKsABWRIFPDc0ISZCu5xs/TMhIwzdsAmCiYcO++FUomyJ0bAXKOhPn9onPX5Ht7X4jfs+vkUJge94QKv9PCGX+53CEkQfixpfnnxp4f2rwmJghbBdk+7GKC3Lzup4tf+ejIm/P08Ycebu+8NU8/fLtEx44u8Pujb7v5778+6yv8Tgtn7OroFpYg7LkZKYoUHz0KgtQAJgqu+/5/I62IKZaIJhOEj8KwM8IMcvg1Dq9uoDAvFgVFJIjeEUROIWXrvRPk14nBUOG+mCBGev86hMI6C/ONUOn5uiISRO8ahKWO7Pr9RR+vqz4/4yX3ZITOf+Gj7lsVCJI39l54Ixx+DaGwDrBVj61+ohNE1C5W2YmMs6PQQcxCEHZ6IBuZUH7JIEjjBMnGVppybCl0EAEIsjzRV3GEAimWGoIsU3xhCgQxOkHYKrcZixqGICK3ect2Hq7HhN55CKFwH7B91ewdGNWG8NDmVUeQ3UHGWWH3r0Mo3G8Fya9um3tMqYpIkPudfYYiCBMPl8cfQSg0GkHY9CnbV501GEFEq0EYYQ++doXGB3ur76P3OIWc9oVQuAdWJvopOHibggOdVe3HL7vp8md/CmUHX3yZpl45JIx998JL9Oy55+nWkUNVn2Mo/5yTZ04SnT4tll29akpyHDhwgP4FuECUkerje3gAAAAASUVORK5CYIJQSwcIpniIF0MJAAA+CQAAUEsDBBQACAgIACBv1kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAgb9ZAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1b23LbNhq+Tp8Cw53ptLuWjDPJVE4nacZJZuI6ib3Zbi+2Q5GwxJgiVZKy5Uwv9mH6DL3auzzAvtL+AEgdLImWZNm1d3IADz8B/N/3nwBSne/HgwRdqLyIs/TAIW3sIJWGWRSnvQNnVJ61POf7Z191eirrqW4eoLMsHwTlgcO1ZBwdOMxnIeMRbxEqeIszJlvds0C2qMsDSt2zKOCug9C4iJ+m2Y/BQBXDIFQnYV8NgrdZGJRm4H5ZDp/u719eXrbrodpZ3tvv9brtcRE5CKaZFgdOdfAUupt76JIZcYox2f/p6K3tvhWnRRmkoXKQVmEUP/vqSecyTqPsEl3GUdk/cDwMavRV3OuDTlKf7GuhIQAyVGEZX6gCHp05NTqXg6FjxIJU339ij1AyUcdBUXwRRyo/cHAbEw8ziV1KOKeeJ1zPQVkeq7SspEk16n7dX+ciVpe2Y31kxuQOKrMs6Qa6T/Tbb4hiitGebohtKDRS2lvYXsPMNtQ23DbCynD7OLei3MpwK8OZgy7iIu4m6sA5C5ICMIzTsxz4m5wX5VWizHyqC1P9yR7oVMSfQZhqUC3oMPE9vMex+Wd1nlGQzIxY5qMNB6yH83253nD0VgqylerRVerJhgGtvuvoR8TMeALvmb/m38KIrEnF6yPa89sNKPm9qNjZr92jU3kEKvpatrKaUg0K7SPMR8LXpk6QAH+QLli2QMSHxqUIPAARgbiAU+IhqVsXMRducMSQh7QcYcg4hPDgP+6aziQS0Jm+6oIfIgIDcSQYIsaPOALvQcYXwS8pAwkhkICH9PCE6i6YRFzCGfMQhzlqN3QJCDJ4EM5heIoYQUw/TFxEJZK6P8K1e0tPTx26pEhiJInuEDwZvNh6MMh7iGltZAVXnA5H5RxE4SCqD8tsOOECpCEGTWOdjUlzofBJJwm6KoHscKKZROgiSLQ3mIHOsrRENYnUXuvlwbAfh8WJKkt4qkCfgovgbVCq8SFIF/XYRjbM0uJdnpU/ZMlokBYIhVmCJ3POEjJzTCezhhM2c4PP3hAzN+TMsbt03AzuoFGhYPwsL2rxIIreaIlpWAAkj9Pk6kWugvNhFs+r0dk3iaajRmESR3GQfgRj1aNoXFCdd0yYqvMO93k9kSyPTq4KsGA0/lnlGdg/89rcp4wL+OPDmYOu7B242sbSlZ7wmZS+IJBmizBIjAeRthA+wYT6rgvhHx6qb0nRlhL7xAWfwL7w7cjqYkJQMFYT3Xu59utKb33ypniRJdNLRvsfgmE5yk3BAGEx1zo9T3uJMhZiAi1k4/C8m41PrGkw29fp1RDOsJ1At2dQRxAZqBAgULVd2xoZPbOJFDYy2Ejg2tbiaHKf+NRImLZrWyMFxmunVmlKajUJroeJCxPPsDPnNcbydW4fpXH5tj4p4/C80pRY+R9Hg67K50170ifZXZ961lBnFOVPusoQjjn+58zxaV+VgTmnTPie64JNeNT3PGun1yy0c67yVCWVQ4AtjLJRYf17ZtBIhfEATu2NCtJA0/130MBejVQvV7XiiSnmLODmLp619YXLpqvDPBu8SS9OwZauTaCzX8+yU4R5PNQmi7qQRM7V1CpB9wByUDT7nPZggDzUuQbwLTW2R1/+00+0h4/Kfpabqg0CE7RGfjAI0gilJnm9SUtAH6KgMw2oAYSm8XPgFTqAyHRlDo0O2aisBY7tpKvedFhI1AAqP1Qa4zf+M7GCY9O7phtl3U8w2jRLWgFjM3aI7qeJpeu027NN1zZBMuwb4itQk+BK5XMwmw6PsmgJJwUa20fR1YHTMgef7crAlsZ6ytqR50K/vXqNTTAxq+0Cnu+M3suwvA7g800AfL4dgLBysaGCTgPOuhgen50VqtSQtSgzkDUiHKTgPcYGIcgPdffawYdK2dBglYKDIQxnIupcmqrZabGKnrth5yiOhksIem4N/XiBo6NNODpa5GguFM4ovBMjnxJErUXT9TygRXQYXQNjuhXGJ6qnr1+D+GgVxHkQxaOiGeei6rJGsnpmK5eYza6wGtzGHYhn4GNiKd5kVcQxsH+eHWmSr0soJM9hhVyYQqPyFWyPXsdRpNJJv+rX1D5T2DQaD4ZJHMblBNhEu9ckrINDVhltCse5UkNdohynp3mQFnrjYyEZrWL3OIeM0svSIHkLs19O8vJ41wuaSdZoTLgD4Vuzi3eRLlrkWkAy3rOaPlrTtzl7myUVC+ccwi83iVYv7z+j3FXOqOMZrRxs1xk9uQKDX5UyUEAr5Oe4eGfvR/Z+AA0s5bo3EWRHqhl452xrZhsnISKYoVWQBdchm3F6Fo9VNB9xZrFtDuzRdim0Yfa3rhNZ5ffNUfsWbn8nQbsZ5iXB9c+CuUUr522tlx4fF9DdhwP0As7uXeWxe6hCliXEaSE5F4jfb5IU32/HV72vs2ndMVNTuk0l5W7TJW5T/drGI4JjwiVzpVxrOcC3Sp+NBeP7poIx3KBeDB9subgM7XsuH1ft8YQW/cVC8nATnzl8OHs7ADanWAhKGcGU+ELWC10XY59i5gmgQvicVoYudlgnNhr6oYU6XIBabWDk6oEY+WQLbZqyF/B9ICbetbirBdxfbWLir+7ZxGf3GnwLNV83/kBS8D1JgAPKuSDYr/YeXEEZkCSp8An3BDfEMbi80+21PM/y5TH+aIGC15tQ8PoBRRnadokvGfG48D3BZL09ekcbysuWn68tqK/s8vLQLi/fL0D881VSwX9uJXtWsg8NB7f4hWy2IjX93duidPVW3X2uSc+3qwm33We8Ib1JF8oJKqT0CZbUda/vTVEXewxT6WLfpdR/RBV+Mwu9+2VhGoEJ32hzvc6NtM2ZTyUDnnwXu1R/KmYZIsz34JrkhBIq/ce0CGumqH8DRXe2H89s/CVLGSIrQ8A8bc2eBSEHSkqCBaa+K3zhM9LAm3hUvOks8FBC3KS0XOE/j2tzaIMXY4u5O29OzQvvxLbyvh3sXFD79pEsr1Ab3obRhSLqRoIfnGONhzlMTG/JVDB/cBBcPHC+yfcQ/taZr2X3byhyP+zgleZt3sdMWVrGzg5L3EXcPla4/fff6K8o/9c39Fto+8sgS0cDlcehM31SDwnjjOrX1m3iwSrU883Hyb702PprYrLGTLNkhuOPm3KsH79FtDVbw9u6qqzX7azJV8s8CNXqVLnCNJagvvvF0PIQahjRQfTDQhCNNwui8f1S0xAml8E5W+nTtpSMSowZoxQTudaOy8P8pGA5qS9Xbht8+aN/w67ZdVrtI7eucbbyuXoDh3nrRV567eOc6RbNDZ+LiMfD7fEqdx3/QjdjVj+wFa+3L3yqMmb9tfv/dd1zSqqk+PWvo6z87mUQ9lGk8q//QvB39mtUe8NZzI+lGk8JPd1yLXKnHzA86QTdIktGpToJc6XS+tddyORDZj8HE94aKNE5lP4RFIXKu6r/5fcEuFkToS0t/i5302A6ZZCX5rWsVfDVUp+xSNE1qqxTNodUjg6QPUJ/Q/myKmseI3avq6HtIPqwokizG050jaL5lM+B9HEWpI83g8T/5GpnLZReLN+Vo9Mvkm/ASMxjpH+Bo9I1XU08RIQaYpFwbbUhFzxsre+gGwrpF815eX6N8+LhvKxZsVqBZYlPPOpzX/+GlXuc7GS1sj/7Ywzzi6nqJ7/P/gdQSwcIPHIdXboKAACPPAAAUEsBAhQAFAAICAgAIG/WQKZ4iBdDCQAAPgkAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgICAAgb9ZARczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAACHCQAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIACBv1kA8ch1dugoAAI88AAAMAAAAAAAAAAAAAAAAAOUJAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwDCAAAA2RQAAAAA" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />

Aktuelle Version vom 1. Juli 2018, 21:38 Uhr

Aufgabe

In dem kegelförmigen Dach einer Mühle soll in ein zylindrischer Wasserbehälter mit möglichst großem Volumen aufgestellt werden. Das Dach hat eine Höhe von 2,5 m und unten einen Durchmesser von 3 m. Welche Maße muss der optimale Zylinder haben?