Facharbeit Lernpfad Terme/Umformen von Termen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
K (Multiplizieren eines Produkts mit einer Zahl und Dividieren eines Produkts durch eine Zahl)
K (Addieren und Subtrahieren äquivalenter Termglieder)
Zeile 88: Zeile 88:
 
==<span style="color: green">Addieren und Subtrahieren äquivalenter Termglieder </span> ==
 
==<span style="color: green">Addieren und Subtrahieren äquivalenter Termglieder </span> ==
  
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue"></span>'''Überlege, ob du folgende Terme vereinfachen kannst:
+
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:70%; align:center; ">''' <span style="color: blue"></span>'''Überlege, ob du folgende Terme vereinfachen kannst:
 
*5•x+3•x=  
 
*5•x+3•x=  
  
Zeile 98: Zeile 98:
 
</popup> </div>
 
</popup> </div>
 
<br />
 
<br />
<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: red">Erklärung:</span>'''
+
<div style="orange:0px; margin-right:90px; border: solid orange; padding: 1em 1em 1em 1em; background-color:white; width:70%; align:center; ">''' <span style="color: red">Erklärung:</span>'''
 
Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält:
 
Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält:
 
::<span style="color: red">m</span>•x+<span style="color: red">n</span>•x=(<span style="color: red">m+n</span>)•x
 
::<span style="color: red">m</span>•x+<span style="color: red">n</span>•x=(<span style="color: red">m+n</span>)•x
Zeile 106: Zeile 106:
 
</div>
 
</div>
 
<br />
 
<br />
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Beispiel</span>'''
+
<div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:70%; align:center; ">''' <span style="color: blue">Beispiel</span>'''
 
T(x)= 9•x-6+7•x+8 = 9x+7x-6+8 = 16x+2
 
T(x)= 9•x-6+7•x+8 = 9x+7x-6+8 = 16x+2
 
Um einen Term übersichtlicher zu machen, solltest du die Teilterme nach dem Alphabet ordnen und dann die Teilterme mit gleicher Variable zusammenfassen.<br />
 
Um einen Term übersichtlicher zu machen, solltest du die Teilterme nach dem Alphabet ordnen und dann die Teilterme mit gleicher Variable zusammenfassen.<br />

Version vom 18. August 2010, 12:28 Uhr

Inhaltsverzeichnis

Umformen von Termen

Äquivalente Terme




Übertrage die Zeichnung in dein Heft und überlege dir zwei verschiedene Terme, mit denen du den Flächeninhalt der grün markierten Fläche ausrechnen kannst. (Hinweis: b1=b2=b)


Tipp: In der vorherigen Aufgabe gab es auch 2 Möglichkeiten den Flächeninhalt zu errechnen.



Einstieg addierensubtrahieren neu.jpg


Erklärung:

Zwei Terme, die bei jeder möglichen Einsetzung einer Zahl für die Variable jeweils den gleichen Wert annehmen, heißen gleichwertig oder äquivalent. Durch Anwendung der Rechengesetze kannst du einen Term in einen äquivalenten Term umformen.

Rechengesetze:

  • Kommutativgesetz (KG): für alle rationalen Zahlen a, b gilt:
a+b = b+a
a•b = b•a
  • Assoziativgesetz (AG): für alle rationalen Zahlen a, b, c gilt:
a+(b+c) = (a+b)+c = a+b+c
a•(b•c) = (a•b)•c = a•b•c
  • Distributivgesetz (DG): für alle rationalen Zahlen a, b, c gilt:
a•(b+c) = a•b+a•c
für alle rationalen Zahlen a, b, c (a\neq 0) gilt:
(b+c):a = b:a+c:a


Beispiel:

T(a;b)= 3a+(7b+2a)

(KG)= 3a+(2a+7b)
(AG)= (3a+2a)+7b
= 5a+7b

Durch geschicktes Anwenden der Rechengesetze kannst du einen Term zu einem äquivalenten Term vereinfachen. Vereinfache nun selbst folgende Terme:

a)T(a;b)= 7a+(9b+6a)

b)T(a;b)= 2•(a•3)•b+4•(a•5)•b

c)T(a;b)= (3+5•x)•x



Addieren und Subtrahieren äquivalenter Termglieder

Überlege, ob du folgende Terme vereinfachen kannst:
  • 5•x+3•x=
  • 5•x-3•x=


Erklärung:

Gleichartige Glieder werden addiert, indem man die Koeffizienten addiert und die gemeinsame Variable beibehält:

m•x+n•x=(m+n)•x

Gleichartige Glieder werden subtrahiert, indem man vom Koeffizienten des Minuenden den Koeffizienten des Subtrahenden subtrahiert und die gemeinsame Variable beibehält:

m•x-n•x=(m-n)•x


Beispiel

T(x)= 9•x-6+7•x+8 = 9x+7x-6+8 = 16x+2 Um einen Term übersichtlicher zu machen, solltest du die Teilterme nach dem Alphabet ordnen und dann die Teilterme mit gleicher Variable zusammenfassen.
Fasse nun selbst folgende Terme so weit wie möglich zusammen:

  • T(z)= 8•z2-7+3•z+(4•z2+2•z2)-2z
  • T(n)= 2,2•n+2,8•n2-0,25+ \left[ n(2.7+0,3n)\right]
  • T(a;b)= 4a2-2a+3b+2-8b2+a(2b+9)


Multiplizieren eines Produkts mit einer Zahl und Dividieren eines Produkts durch eine Zahl

Überlege, wie du mit Hilfe der Rechengesetze den folgenden Term vereinfachen kannst.

T(x)= (3•a)•2


Erklärung:

Man multipliziert ein Produkt mit einer Zahl, indem man einen der Faktoren mit dieser Zahl multipliziert.

(4•a)•3 = 4•(a•3) = 4•(3•a) = (4•3)•a = 12•a = 12a


Überlege nun, wie du folgenden Term vereinfachen kannst.

T(a)= (14•a):2


Erklärung:

Man dividiert ein Produkt durch eine Zahl, indem man einen der Faktoren durch diese Zahl dividiert.

(9•a):3 = \frac{9*a}{3} = \frac{3*a}{1} = 3 •a = 3a

Beispiel

Forme möglichst einfache Terme:

  • (-6n):2
  • 24•0,5b
  • 2m•6
  • 25y:(-0,1)
  • \left( \frac{x}{4} +\frac{x}{12} \right) :3
  • (2y+5y-6y)•2


Übungsaufgaben

Aufgabe 1:

Prüfe, ob die Terme äquivalent sind

1:

T1 (x)= 5x-2x+6x

T2 (x)= 2•x•2+5x (äquivalent) (!nicht äquivalent)

2 :

T1 (y)= 4y-3•4y+15

T2 (y)= 3•5+2y-4y-6y

(!äquivalent) (nicht äquivalent)

3:

T1 (y;z)= 2y-3+z

T2 (y;z)= 5y•2+z+5-8y-8

(äquivalent) (!nicht äquivalent)

4:

T1 (z)= 4•\frac{3}{2} -2z

T2 (z)= 6+8z-5•20%-z•9

(!äquivalent) (nicht äquivalent)

5:

T1 (r)= 3r-23 r+5-r

T2 (r)= 3•r•2 (!äquivalent) (nicht äquivalent)










































Aufgabe 2:

Wie ändert sich der Flächeninhalt eines Dreiecks, wenn man seine Grundseite verdoppelt und die dazugehörige Höhe verdreifacht?