2008 VI: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: Inhalt folgt)
 
(bis Aufgabe 1 a)
Zeile 1: Zeile 1:
Inhalt folgt
+
__NOTOC__
 +
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 +
 
 +
 
 +
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 +
<tr><td  width="800px" valign="top">
 +
 
 +
<center><big>'''Leistungskurs Mathematik (Bayern): Abiturprüfung 2008'''</big></center>
 +
<center><big>'''Geometrie VI'''</big></center>
 +
 
 +
 
 +
<center>[http://www.isb.bayern.de/isb/download.aspx?DownloadFileID=6765c5a90ce67dce2877992c3f4e2d9f '''Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern'''] - [[Media:LKM Abi 2008 VI lös.doc|Lösungen zum Ausdrucken]]</center>
 +
 
 +
</td></tr></table></center>
 +
 
 +
 
 +
</div>
 +
 
 +
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 +
 
 +
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 +
<tr><td  width="800px" valign="top">
 +
 
 +
;Aufgabe 1
 +
 
 +
In einem kartesischen Koordinatensystem des IR<sup>3</sup> sind die Punkte M(−2|4|1), S(6|8|9), P(4|−8|1) sowie die Gerade g : <math>\vec x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}</math>, λ ∈ IR gegeben.
 +
Die Strecke [MS] ist die Höhe eines geraden Kreiskegels. Sein Grundkreis k um den Punkt M hat den Radius <math>6\sqrt{5}</math> und liegt in der Ebene E.
 +
<br /> [[Bild:Beispiel.jpg]]
 +
 
 +
a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.
 +
<br />[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0]
 +
 
 +
[[Bild:ABI_2008_VI_Grafik_A1.jpg]]
 +
 
 +
 
 +
:{{Lösung versteckt|
 +
[[Bild:ABI_2009_III_1a_Lös.jpg|750px]]
 +
}}
 +
 
 +
 
 +
b) Die Wahrscheinlichkeit für eine fehlerhafte Fliese sei p. Wie würde die Entscheidungsregel mit einem möglichst großen Ablehnungsbereich lauten, wenn man die Nullhypothese H<sub>0</sub>: p > 0,1 anhand der 50 Fliesen eines Kartons auf dem Signifikanzniveau 5 % testen würde?
 +
 
 +
:{{Lösung versteckt|
 +
[[Bild:ABI_2009_III_1b_Lös.jpg|750px]]
 +
}}
 +
 
 +
 
 +
</td></tr></table></center>
 +
 
 +
 
 +
</div>
 +
 
 +
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 +
 
 +
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 +
<tr><td  width="800px" valign="top">
 +
 
 +
;Aufgabe 2
 +
 
 +
 
 +
<popup name="Tipp">
 +
''hier könnt könnte eine Formel,ein Hinweis auf Wesentliches, Links zu Hilfeseiten usw...stehen''
 +
</popup>
 +
 
 +
</td></tr></table></center>
 +
 
 +
 
 +
</div>

Version vom 5. Februar 2010, 13:09 Uhr


Leistungskurs Mathematik (Bayern): Abiturprüfung 2008
Geometrie VI


Download der Originalaufgaben: Abitur 2008 LK Mathematik Bayern - Lösungen zum Ausdrucken


Aufgabe 1

In einem kartesischen Koordinatensystem des IR3 sind die Punkte M(−2|4|1), S(6|8|9), P(4|−8|1) sowie die Gerade g : \vec x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, λ ∈ IR gegeben. Die Strecke [MS] ist die Höhe eines geraden Kreiskegels. Sein Grundkreis k um den Punkt M hat den Radius 6\sqrt{5} und liegt in der Ebene E.
Datei:Beispiel.jpg

a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform und zeigen Sie, dass der Punkt P auf dem Grundkreis k liegt.
[Zur Kontrolle: E : 2x1 + x2 + 2x3 − 2 = 0]

ABI 2008 VI Grafik A1.jpg


[Lösung anzeigen]


b) Die Wahrscheinlichkeit für eine fehlerhafte Fliese sei p. Wie würde die Entscheidungsregel mit einem möglichst großen Ablehnungsbereich lauten, wenn man die Nullhypothese H0: p > 0,1 anhand der 50 Fliesen eines Kartons auf dem Signifikanzniveau 5 % testen würde?

[Lösung anzeigen]



Aufgabe 2