2009 IV: Unterschied zwischen den Versionen
(formel ergänzt) |
(Alternativlösung Teilaufgabe 4a)) |
||
Zeile 104: | Zeile 104: | ||
b) Für die K12 eines Gymnasiums sind im Fach Geschichte 4 Kurse mit jeweils mindestens 20 Teilnehmern eingerichtet worden. Wie viele verschiedene Aufteilungen der 20 Raucher der K12 auf diese 4 Kurse sind prinzipiell möglich, wenn nur zwischen Rauchern und Nichtrauchern unterschieden wird? | b) Für die K12 eines Gymnasiums sind im Fach Geschichte 4 Kurse mit jeweils mindestens 20 Teilnehmern eingerichtet worden. Wie viele verschiedene Aufteilungen der 20 Raucher der K12 auf diese 4 Kurse sind prinzipiell möglich, wenn nur zwischen Rauchern und Nichtrauchern unterschieden wird? | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
− | [[Bild:ABI_2009_4_A4_Lös.jpg|800px]] | + | [[Bild:ABI_2009_4_A4_Lös.jpg|800px]]<br /> |
+ | '''Alternativlösung''' zur Teilaufgabe a):<br /> | ||
+ | Man betrachtet beide Kurse, wobei in jedem 6 Raucher sein sollen (ebenfalls Urnenmodell ohne Zurücklegen):<br /> | ||
+ | <math>\frac{{18 \choose 6}{20 \choose 6}}{{38 \choose 12}}</math> <math>\approx 26,6%</math> | ||
}} | }} | ||
Version vom 27. Februar 2010, 21:37 Uhr
|
Die folgenden Angaben zum Rauchverhalten beziehen sich auf den Drogen- und Suchtbericht der Bundesregierung aus dem Jahr 2008. Personen, die regelmäßig rauchen, werden unabhängig vom Geschlecht als Raucher bezeichnet. Die anderen Personen werden als Nichtraucher bezeichnet. Ein Drittel der Erwachsenen in Deutschland sind Raucher.
c) Ab welcher Anzahl n ist die Wahrscheinlichkeit aus Teilaufgabe 1b kleiner als ein Milliardstel? |
Im Jahr 2005 waren 20% der 12- bis 17-jährigen Jugendlichen Raucher. Es wird vermutet, dass durch diverse Kampagnen diese Raucherquote auf 18% gesenkt werden konnte. Um diese Vermutung zu testen, werden 500 Jugendliche dieser Altersgruppe anonym befragt. Die Nullhypothese Mindestens 20% der Jugendlichen sind Raucher wird abgelehnt, wenn weniger als 19% der Befragten regelmäßig rauchen. Berechnen Sie unter der Annahme, dass die Kampagnen so erfolgreich waren wie vermutet, die Wahrscheinlichkeit für den Fehler 2. Art. Verwenden Sie die Normalverteilung als Näherung. |
Im Folgenden werden ausschließlich Schülerinnen und Schüler der Sekundarstufe I, die die Jahrgangsstufen 5-10 umfasst, betrachtet. Von diesen besuchen in Bayern jeweils 35 % eine Hauptschule beziehungsweise ein Gymnasium. Vereinfachend werde angenommen, dass die Übrigen eine Realschule besuchen. Es soll angenommen werden, dass die folgenden Raucherquoten aus dem Bericht der Bundesregierung auch für Bayern gelten: In der Sekundarstufe I sind insgesamt 16% Raucher; an Hauptschulen ist die Quote der Raucher mit 24% mehr als dreimal so hoch wie an Gymnasien mit 7%.
|
a) An einem Gymnasium werden die 38 Interessenten am Grundkurs Physik, von denen 12 regelmäßig rauchen, auf 2 Kurse mit 18 beziehungsweise 20 Teilnehmern zufällig verteilt. Mit welcher Wahrscheinlichkeit sind in jedem der beiden Kurse gleich viele Raucher?
|