Verschieben von Funktionsgraphen: Unterschied zwischen den Versionen
(→3.Beispielaufagben) |
|||
Zeile 3: | Zeile 3: | ||
'''<span style="color: blue">Problemstellung:</span>''' | '''<span style="color: blue">Problemstellung:</span>''' | ||
− | + | <ggb_applet width="892" height="512" version="3.2" ggbBase64="UEsDBBQACAAIAAORMjwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vffb9s2EH5e/wpCTy2GxJI8Fw1gpUg6FAiQNQPcdUAfBlDSWeJMkRpJOXL++h2PkuMfXeCs3QbsieLxdLr77uNHav62byRbg7FCqyxKzuOIgSp0KVSVRZ1bnr2J3l6+mFegK8gNZ0ttGu6yaHqeRt7eicsX381tre8Zl+TyScB9FjnTQcRsa4CXtgZwwbzk0qKdd72QgpvNXf47FM4+LoQYN6rt3BikaMpbYcfphL7XSuF+FGtRgmFSF1n0eoaZ49MnME4UXGbRD3GwpFmUHiyiaepXa23Eg1bOuz8GX6KFMSseAAFJvW0+oTrn0BVSlIIrXwzlgU6M3YvS1ZjC9DWGBFHVmOssiUO0QmtTLjbWQcP6z2A0ppPMPM6bMJuGmcW88IOzmJZ2ZxQG1gtwDrtiGe/BjthURpS7zzf2WstyC2erhXLveOs6Qw2dDqaF2/jw+CXj071SlYTBliLgNRSrXPeLAME0hP64aekVSiev3mmpDTMe3Bk6DGMeRvLxeW69YvKJyWOI4YNu15OLlDxozMNIXlKokNpQdzIWPQLMe2GZN3gQkYcjHJLngH2NWKeEux0n2P/VUGkS/D90TY7832XANmTyjULOJwfUma/AKJCBIAr72unOsrUnYmgd5VFCIRqchoUBEO6b9QsmEKwlVAbGvMPuCXDR6h4JD8zzyZiEz8FiroVDFcB6nK8FN4stagE5KLZG8/tOrfy6rQxva1B+FzvcQVn0HnuIlbFfhVxFrOQO3/biAD1uf+uVJSDHsDiUl77F8WX/imWs/+3l9Dx+RdmAhAZw5zni2bJTlM0W9GW0zwZXI+wKwxNl3S45SY00KctB5x5bjMt/wU3UoLbm+DRuPck3qDK7cFK0n3S5DzJX2CxCEDd76wN4OrQA5SCsY5KsxZC0H3d6fUJlyKKA0RFaqmvAiGJbJyewMLluSDE5/8bYJCdiM/hZSVLdCDxkzkjvGt6jvvknnlstOweLAomsbnVBII7ZDeKaxCSM+M6bC1JI1NvUPyxFD4+C92VFP4k1X9O+vc4csD6LqoH01R7p2feMR+wE5lf/HPNH7X4u9++WSwvOd+MsvaBmPLkznsntQjcNVyVTvMHln/2BRRAIfytgPPZiEErp3Gi5CkGGV49ApVNvC8ZVdATWwJ8n0UrSgBaNw0n3H6kFCbr1DUiG3UDjw85ODwe9v6DQZ6fPR7k6Qvn6OShf/w9RTr8O5QVU3n6A8xXWlwzg7sFdPg23HaKNeJb/zhH59xqSHEJ6NmIaH2J6UgXwhwo+Nly9RIP/BIVwWxClb+eNcniNARLU4/vVCqD119o79dFwZf2/TfDZubdtOznZvSTRP8HwT3T5J1BLBwgqgdzw+gMAAEUNAABQSwECFAAUAAgACAADkTI8KoHc8PoDAABFDQAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAADQEAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | |
Im nebenstehenden Koordinatensystem siehst du den Funktionsgraphen f der Funktion f(x)=x<sup>3</sup>. Der rote Graph h liegt 3 Einheiten über dem Graphen von f. Welcher formelle Zusammenhang besteht nun zwischen den beiden Graphen f und h? <br /> <br /> <br /> | Im nebenstehenden Koordinatensystem siehst du den Funktionsgraphen f der Funktion f(x)=x<sup>3</sup>. Der rote Graph h liegt 3 Einheiten über dem Graphen von f. Welcher formelle Zusammenhang besteht nun zwischen den beiden Graphen f und h? <br /> <br /> <br /> | ||
Version vom 18. Januar 2010, 18:21 Uhr
Inhaltsverzeichnis |
Verschieben von Funktionsgraphen
1.Verschiebung nach oben/unten
Problemstellung:
Im nebenstehenden Koordinatensystem siehst du den Funktionsgraphen f der Funktion f(x)=x3. Der rote Graph h liegt 3 Einheiten über dem Graphen von f. Welcher formelle Zusammenhang besteht nun zwischen den beiden Graphen f und h?
Erklärung: Der Graph f gehört zu dem Funktionsterm f(x)=x3. Der Graph h liegt 3 Einheiten über dem Graphen f. Das bedeutet, dass jeder Funktionswert h(x) an der Stelle x 3 Einheiten größer ist, als der Funktionswert f(x). Dies fällt auch auf, wenn man die Graphen im Koordinatensystem betrachtet. Der rote Graph h verläuft über dem Graphen f, nimmt aber ansonsten den gleichen Verlauf. Er ist also um 3 Einheiten in positiver y-Richtung (nach oben) verschoben.
Für den Funktionsterm h(x) gilt somit: h(x)=f(x)+3.
- f(2)=8
- f(2)=8
Verschiebung um 3 Einheiten nach oben h(x)=f(x)+3
- h(2)=f(2)+3
- h(2)=8+3
- h(2)=11
- h(2)=f(2)+3
Bei zwei gegebenen Funktionen f und h, für die gilt: h(x)=f(x)+a entsteht der Graph h durch eine Verschiebung des Graphen f um a Einheiten in y-Richtung. Für ein positives a erfolgt die Verschiebung in positiver y-Richtung (nach oben), für ein negatives a in negativer y-Richtung (nach unten).
2.Verschiebung nach rechts/links
Problemstellung: Nun entsteht der Graph j, indem der Graph von f mit x→x3+2x2 um 3 Einheiten nach rechts verschoben wird. Welcher Zusammenhang besteht nun zwischen den Funktionen?
Erklärung: Eine Verschiebung des Graphen um 3 Einheiten in positiver x-Richtung (also nach rechts) bedeutet, dass der Graph j 3 Einheiten weiter rechts verläuft, als der Graph f. Somit entspricht der Funktionswert von f an der Stelle x dem Funktionswert von j an der Stelle x+3.
Somit ergibt sich der Zusammenhang j(x)=f(x-3).
- x=1 f(1)=3
- x=1 f(1)=3
Verschiebung um 3 Einheiten nach rechts:
- j(x)=f(x-3)
- j(x)=(x-3)3+2(x-3)2
- j(4)=(4-3)3+2(4-3)2
- j(4)=1+2=3=f(1)
- j(x)=f(x-3)
Man kann also erkennen, dass der Funktionswert von f(x) an der Stelle 1 gleich dem Funktionswert von j(x) an der Stelle 4, also 3 Einheiten rechts von f(x), ist.
Bei zwei gegebenen Funktionen f und j, für die gilt: j(x)=f(x-b) entsteht der Graph j durch eine Verschiebung um b Einheiten in x-Richtung. Für ein positives b erfolgt die Verschiebung in positiver x-Richtung (nach rechts), für ein negatives b in negativer x-Richtung (nach links).
3.Beispielaufagben
Aufgabe 1:
Gegeben ist die Funktion f(x)=x3+5x-5. Bestimme den Funktionsterm h(x) für den Graphen h, der ausgehend vom Graphen f 5 Einheiten nach unten und 2 nach rechts verschoben ist.
Aufgabe 2:
Bestimme die Funktionsterme der Graphen, die durch Verschiebung aus dem Graphen f(x)=x3 hervorgegangen sind.
Aufgabe 3:
Kreuze an, was stimmt. Es können mehrere Antwortmöglichkeiten richtig sein.
Weiter zum Kapitel Strecken und Spiegeln von Funktionsgraphen