Strecken und Spiegeln von Funktionsgraphen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 5: Zeile 5:
  
 
'''Problemstellung:''' Im untenstehenden Koordinatensystem ist der Graph der Funktion f(x)= 2x<sup>4</sup>-3x<sup>2</sup>+0,5 dargestellt. Wird diese Funktion nun mit einer rationalen Zahl k multipliziert, entsteht ein veränderter Graph g(x). Versuche, durch Verschieben des Reglers das Verhalten des Funktionsgraphen zu erklären.
 
'''Problemstellung:''' Im untenstehenden Koordinatensystem ist der Graph der Funktion f(x)= 2x<sup>4</sup>-3x<sup>2</sup>+0,5 dargestellt. Wird diese Funktion nun mit einer rationalen Zahl k multipliziert, entsteht ein veränderter Graph g(x). Versuche, durch Verschieben des Reglers das Verhalten des Funktionsgraphen zu erklären.
 +
 +
'''Erklärung:''' Da der Graph von g(x) aus einer Multiplikation von einem Koeffizienten k und dem Funktionswert von f(x) entsteht, gilt für den Graphen g die Funktionsgleichung g(x)=k×f(x). Dadurch nimmt g bei einem Koeffizienten k>1 einen größeren Funktionswert an als der Graph von f. Der Graph ist also in y-Richtung gestreckt. Dasselbe gilt auch für 0<k<1, nur das der Graph g hier kleinere Funktionswerte annimmt. '''Die Nullstellen bleiben dabei unverändert!'''
  
 
== Streckung in x-Richtung ==
 
== Streckung in x-Richtung ==

Version vom 15. Januar 2010, 14:49 Uhr

Inhaltsverzeichnis

Strecken und Spiegeln von Funktionsgraphen

Streckung in y-Richtung

Zur Erinnerung: Bei quadratischen Funktionen haben wir bereits festgestellt, dass der Funktionsgraph durch einen Koeffizienten a weiter oder enger als die Normalparabel f(x)=x2 sein kann. Diese Erscheinung wird nun allgemein für alle Funktionstypen untersucht.

Problemstellung: Im untenstehenden Koordinatensystem ist der Graph der Funktion f(x)= 2x4-3x2+0,5 dargestellt. Wird diese Funktion nun mit einer rationalen Zahl k multipliziert, entsteht ein veränderter Graph g(x). Versuche, durch Verschieben des Reglers das Verhalten des Funktionsgraphen zu erklären.

Erklärung: Da der Graph von g(x) aus einer Multiplikation von einem Koeffizienten k und dem Funktionswert von f(x) entsteht, gilt für den Graphen g die Funktionsgleichung g(x)=k×f(x). Dadurch nimmt g bei einem Koeffizienten k>1 einen größeren Funktionswert an als der Graph von f. Der Graph ist also in y-Richtung gestreckt. Dasselbe gilt auch für 0<k<1, nur das der Graph g hier kleinere Funktionswerte annimmt. Die Nullstellen bleiben dabei unverändert!

Streckung in x-Richtung

Spiegelung an der x-Achse

Spiegelung an der y-Achse

Beispielaufgaben