Verschieben von Funktionsgraphen: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
::: h(1)=4 | ::: h(1)=4 | ||
+ | |||
+ | '''Allgemein:''' Bei zwei gegebenen Funktionen f und h, für die gilt: h(x)=f(x)<span style="color: red">+a</span> entsteht der Graph h durch eine Verschiebung des Graphen f um <span style="color: red">a</span> Einheiten in y-Richtung. Für ein positives a erfolgt die Verschiebung in positiver y-Richtung (nach oben), für ein negatives a in negativer y-Richtung (nach unten). | ||
== 2.Verschiebung nach rechts/links == | == 2.Verschiebung nach rechts/links == | ||
+ | |||
+ | '''Problemstellung:''' Nun entsteht der Graph j, indem der Graph von f mit x→x<sup>3</sup>+2x<sup>2</sup> um 3 Einheiten nach rechts verschoben wird. Welcher Zusammenhang besteht nun zwischen den Funktionen? | ||
+ | [[Bild:Verschiebung zur Seite.png|700px]] | ||
+ | |||
== 3.Beispielaufagben == | == 3.Beispielaufagben == |
Version vom 6. Januar 2010, 16:37 Uhr
Inhaltsverzeichnis |
Verschieben von Funktionsgraphen
1.Verschiebung nach oben/unten
Problemstellung: Im nebenstehenden Koordinatensystem siehst du den Funktionsgraphen f der Funktion f(x)=x3. Der rote Graph h liegt 3 Einheiten über dem Graphen von f. Welcher formelle Zusammenhang besteht nun zwischen den beiden Graphen f und h?
Lösung: Der Graph f gehört zu dem Funktionsterm f(x)=x3. Der Graph h liegt 3 Einheiten über dem Graphen f. Das bedeutet, dass jeder Funktionswert h(x) an der Stelle x 3 Einheiten größer ist, als der Funktionswert f(x). Dies fällt auch auf, wenn man die Graphen im Koordinatensystem betrachtet. Der rote Graph h verläuft über dem Graphen f, nimmt aber ansonsten den gleichen Verlauf. Er ist also um 3 Einheiten in positiver y-Richtung (nach oben) verschoben.
Für den Funktionsterm h(x) gilt somit: h(x)=f(x)+3.
Beispiel: f(x)=x3
- f(1)=1
- f(1)=1
Verschiebung um 3 Einheiten nach oben h(x)=f(x)+3
- h(1)=f(1)+3
- h(1)=1+3
- h(1)=4
- h(1)=f(1)+3
Allgemein: Bei zwei gegebenen Funktionen f und h, für die gilt: h(x)=f(x)+a entsteht der Graph h durch eine Verschiebung des Graphen f um a Einheiten in y-Richtung. Für ein positives a erfolgt die Verschiebung in positiver y-Richtung (nach oben), für ein negatives a in negativer y-Richtung (nach unten).
2.Verschiebung nach rechts/links
Problemstellung: Nun entsteht der Graph j, indem der Graph von f mit x→x3+2x2 um 3 Einheiten nach rechts verschoben wird. Welcher Zusammenhang besteht nun zwischen den Funktionen?