Übungen: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(y = a sin x + d)
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 74: Zeile 74:
 
</div>
 
</div>
  
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 
  
 
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 
<tr><td  width="800px" valign="top">
 
 
==  Die Funktion y = a sin b(x - c) + d ==
 
 
<ggb_applet width="750" height="504"  version="4.2" ggbBase64="UEsDBBQACAgIAN2NaUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAN2NaUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VzrUuNGFv6dPEWvtyoFG2z6otZlgKQgs9mdqiFQC5PKbvFHlhpbgyx5JBnMJFOVh8mb5AHySnu6W7Il35CwTTzJxLSlbnWfS5/vXNRw/O14EKJ7kaRBHJ20SAe3kIi82A+i3klrlN227da333x53BNxT3QTF93GycDNTlpGh7amz8FVx8Ty4cA/aXmCY4qJ1zaZa7UN36JtWxhumwjT9Ihn3gpqtxAap8GrKP7BHYh06HriyuuLgfs29txMzdnPsuGrw8OHh4dOsXonTnqHvV63M079FgLKo/SklX95BdNVHnpgajjFmBz+dP5WT98OojRzI0+0kORqFHzz5RfHD0Hkxw/oIfCz/knLwbyF+iLo9YFN0yAtdCgHDYHXofCy4F6k8GjpUvGcDYYtNcyNZP8X+hsKJ+y0kB/cB75ITlq4Qyl2HMOwOGE2oYQbLRQngYiyfHCx6GEx3fF9IB70vPKbWtLAjgU6CNKgG4qT1q0bpsBWEN0mIFKgKBnBZZo9hqLrJsX1lCByAP9gQPBRyLlAd1oOJy3G2IHtHFgYH3CONSnldVsoi+NQTYoRd9AvvyAKCkcHsiG6odCYpu7C+h5muqG6MXTD9RhDP27ooYYeY+gxBlvBZn495TO/UWG0YJOW2cQH+AD4PlC8z/Bol3gkkoFfEJGUq4YhSTNRtMvGyC9NfWmphmDdkLzTlj+UrMw1uWEFN6zMDcx+ID/mEo5IaVW9FZYvOrdVihVt26knP7oWj2ypvugy7tYUarEg4aUFOex/+b/6zC3JGvG4VKTE4HVXNI11zP0ZLFr4JRY8PizA7Ti3OZT25dh8m2ZikEqkYY4CG0QQB4M0LcAGjogDjSUNkyLCkcHhktjIlK2FmLRFAzFkIzmOMKQghdvww1B2aiIOc8mbljZYxAzEGSIKiAwE8IMUmAGwUQYjOEccHpKrE7ksM5FhwgWzkQEEShizJFwweA6uYXGKGEFMPkssRE1kUmRJKCSGREjTlrTDpBSZGJnyUcBCwEGNgfCEjZjkBnb4ME6DiXD7IhxOtKLkGETDUVaRnTfwi69ZPDPaj727s4ms8x7hpll5GHigqaPTHqniB784Dt2uCCFauJIbAaF7N5T2q1a4jaMMFZuA6nu9xB32Ay+9ElkGT6XovXvvvnUzMf4eRqfF2mqsF0fpZRJn38XhaBClCHlxiCesxSEpfacTquGClTqMcgcvdZil79bCdWPoQaNUwPpxkhbDXd9/I0dMjRwEeBGFj2eJcO+GcVBl4/hQRRnHYuSFgR+40Y+w2eUqUi6oCDoUsBZBh2GZBSFx4l89pmABaPw/kcRSjlaHW4bFqO1Y8GGAHo+6i2K7Y1LMmMMtG3PLga7Uc6XtGrTDCWEW49jkNgF8fSx6DOixHAKPmdgh8IxaWdxPFOSOxYT3XhL45e9v0rM49CeSUMx/5w6zUaLiR1gnkSydRr1QqA2iPANEYt5dNx5f6Z3B9FzXj0O4wnr9bk8JHQGuUA589PK2q1s1RhI2GYXVGKxG4GKrBf6knzhUjVBtV7dqFOxdTVrOKCm4pLhYJkgVGuJWxbbUxpdx3SgKsrfFRRZ4dzmnRI//YTToiun2kQNeBzoIlQE3t7DlmIyalmPYjmnOLEq2smhJQhCWptlPMijllHHHtiwOP6lj2y3V9V/Vpb9f90XmLhyqNvrMFj++E0kkwtyiYDON4lGqAaJkbGBfl27WP438/4geYNulK91LBsTroYoBDVjCCwbwoL6fq8+VW+sdCEPf9UUvEfl4N1RJg1au6sVls5q7rab6PokHb6L7a9i3M6QeHxb8HKdeEgyldaAu+Ls7MbUAkJIL3tIvPyfBArjwJHKDJjKpJoCRUdaPE5UXAPpB2oF+iO+F1Bq4HGK0JGSEYgA5AcqUZSjjmuyAK5VtSFWjuPse8Hhmh0zFBsv7ymtooMoHJ7oTnl1oQsrY3HDYV+rOBRS6j0BdWWRqsYvb21RkaHzSahNISB6hNUvd57E/K2dQoyYoE0M5v9y0QyH0dtfcwpchrKdgpALNoLpUrrXAcuTSVCahH0t7XIlNIk3FNem7M1sAdrCWuFLaYOBGPopUrPMWQKI1dbEulgpALjig8SlYai7LUVZ0Bnq6fJI5VUrMmWgqmNdkEZ/OqnKZtnBtXc0pYypQlb4/5jUAkGCbTuaaQGQGrvsOMtJU4XiWI7b68u/A94WKTLQD+RDpR1KNS8FgGAZekK2W86Xa41VBB3PSvVwt3aqhXO6moXBtKMYLGAruOA6nDvh4iAssGVxs0lDEeJjAhpBU5hJ9gDByDOSO9y73URuN9672dSxZVVM0Gogk8FrTx1Sdww1H+VJOx6AGx9SybMeh3K5vA+RpIv2cyMea1Pmz1E2sY0MEeROp1SPImyVoWSixIfq6OX0U/QOxDuQuh2ivpOFaNHdnacYd0zSZYUOK6GALG8zaKM2nOc17kkL0NSpoJ9yhJmccQmiHASNd+BgH6FHzUUGReaaq8HL6BLxU04oF+DJYxnER79YH9ym+OBrJ6wE/6zjUJsTCNgUVEMgQtuhJLxIIe3px5IYLfOqp9qnziB828KfhjvjTNskdKs4FuUDOO+BewzlhnzVxr2drutf+vCYI1Qmfap/tYql2sCttYDMOdon9sI7hcIBiZkDWbTtY5rlb8bfuxJWdSTSu69HceQcyR/AmwfhDTuaHvfE+OkEuYHEaRHtdaPfGQLe3LyHaX0T67ShS2VNrOldt1C1TT7FRDt3k1XPtfKHRGquMdrV0MjHOSC6hrz6M4uzoEd0coZObI30FonHhk1/cHIHoUKmvO+nbG98ctW+O9iZdex54N+n19idj/vh1f//m6OvyKH/Sua+bRXqQRLaqFK9n/fHWcDhI37rX4qfZGoIqSaZgB7fT8h2Y4Hme9uhaJW4VsJqjh9tN43CUiSsvESIqXlEiBTNUp7wGd+aUXJFdN45D4U63cDxrfqU9W0eg68tsipWEa7Q02OqQIa/bodtgLPyKdt2hkoga/f0oupNXaS8UgdcfRT30cTRAAhBUAM6GYSYi9C9ZB37VOOs+W5V1iwZRglg3blvguJ4btzVJyhd4leV4xAo8opuMIpoWQ24bqOV2C2opCsh/Xq1kogeZ9q+hh3m3cT2T4ZjT7KyU1IB3dZsmNtebD+xM7X1l09XN+pqwOyZziMUMQjBzGMsjbg65JIVIzDQcgh3bepma4PUqM+g1MIPeZ4pOCwS/fXRa7Wf7O+hnKWcrBVzPz5IOuvL6SZBlc350cXxJK/HlmUh6bdjEgUAj2NTXbqiv8vCvRvRHNw8RG9ukSnQvEP3ZWqFWjTxNioxVVAAh0UcZIkUQEKXxA2jCbyJ/ti35r+0pF0p/hRyZ2VCORkWO52ADEFe6vQbCMzYvvI0FGi+zeQ2H1xf6eRFo4OfVSc+3UCfdYmC3neLnlejJ+4tzmtO5iOH96oghzWcrRPh+h0rRK0S8oMxUrpK2ece2OMWMy7cYhmM5zy24rI4glKRDWdZ7E8nTBkJVmObPJ9wJMZRHUy6i68SNUnn+uWqZT4OVWQEr/+aoXNVZWPCaQytzTbTapvUsRKuXqr8w28pBbL7+slAZdkUZblUZbi1l2JtXxnbjnpdSBjf4UmWsDNIHuxikW3wloNUL0mnTIJ1X9udpNxQpRIc+0PzY/hFwyusHojuKevUjHb6t7friYeIk3NaH954WplURpkxzpCBPpRvIRn6DaNH6y8jQYE59Gb4rl5cOEG4a9b1bNyS5WwqV2Fj/Jc6Tp8nwC4aBeQ313VwYGDULA6PPReZ05v14e+5oRp3iEdmR0K+Bii/nVDxspuLhmmi0VMPrnWkj+r13s0xr7pSX2grE7kDsjzHnkAbYnJgrtsLOJQErQ51kF0Mdx1qptHqhDlsR6qzwERe7XBnYzAkRPIN0m3UnP4IU4mQGai401JzPQc39aqi515MVwr/fZeUsL9tMp3oGYJR+PSCHDM9NMpEGbpSbaQbX6iyVjo4u6gWjTiUYvZKToKv6IaizOweZ/7Rqu871GTHqSZxUT9RcAi1AedT+ZwT0X9YXPVn3nMtfSPb6iG59f3e3g/6OGXQlrtTzd0bT1J6wpbn9+Jm5PVn3HdAToeCLJvc652ILTlItFmf1JZBXLeVNjr1VMoryGbgm59zWfVu03ZxqJyqwzDBr6q1alRnO6O1hwXHFJqpat1SzweRotxTFbTtXFK+pKHv2wIDw+hHg083RfRzdHHVf3Ux8avj7b1FP3BzJf1qj6OY2cb2f6R+/fvq5+wk1wLR16+svjGmb0R+uD5BmXf1VD3zsRb//5vUhj0kQ5LCZCHoikr7n9Sjx+j036u2j0oGEBvpa9xzIE9HRS55DoHxplLNYxLgq4sWCRb78Jg93oOlRhX157KaBlPFfRsrUog3jeHNhHb+KPQ1Eue7b1N0JmgzOGwZN1fdLC85qu6MUpDvQJ7RRV6RZMBg0woP6L5y2IcEVsMtm/pv89asGXlT9sS51hq+ewGkVIV6P0J0bAUooNLiU4hdf/Z3goyu095U7jNMj/VOVB8o39g/UsMvqsEpKWxmu0EU+cVZ9Qh77qwxUgwZBpkzqXGr/vkhFRPS3BqcBnwKoJ2tF2/ttkE3kyPRpY8wPVMk/UFXPGKslodMwjV/pEKo7F0INP+lb+T0EN9Gnn1eHzZ9mQuvS7+4+LPwdsXlbXrfq9FnGYnXKIXks5sy5sPrF2flXfaNGxdnR5/Km74m3q39ytfaw/Ada5HXx5ya/+T9QSwcIJA8ta/oNAAAeUwAAUEsBAhQAFAAICAgA3Y1pRdY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADdjWlFJA8ta/oNAAAeUwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAJEOAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<br>
 
 
</td></tr></table></center>
 
 
 
</div>
 
  
 
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
 
<div style="padding:1px;background: #EEEEE6;border:0px groove;">
Zeile 96: Zeile 82:
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
  
== y = ==
+
==Die Funktion  y = sin(x-c)==
  
[[Datei:CnBauerSinus2Ueb1.png]]<br>
 
 
<br>
 
<br>
  
Zeile 111: Zeile 96:
 
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 
<center><table border="0" width="800px" cellpadding=5 cellspacing=15>
 
<tr><td  width="800px" valign="top">
 
<tr><td  width="800px" valign="top">
== y = ==
+
== Die Funktion  y = sin(bx)==
  
[[Datei:CnBauerSinus2Ueb1.png]]<br>
 
 
<br>
 
<br>
  

Aktuelle Version vom 9. November 2014, 18:21 Uhr


Inhaltsverzeichnis

y = sinx + d

CnBauerSinus1Ueb.png

1. Klicke den richtigen Funktionsterm an!

f(x) g(x) h(x) k(x)
sin x + 1,5
sin x + 2,5
sin x - 1,5
sin x - 0,5

Punkte: 0 / 0



y = a sin x

CnBauerSinus2Ueb1.png

1. Klicke den richtigen Funktionsterm an!

f(x) g(x) h(x) k(x) p(x)
3 sin x
1,5 sin x
0,5 sin x
-0,5 sin x
-2 sin x

Punkte: 0 / 0



Die Funktion y = a sin x + d


CnBauerSinus2Ueb2.png

1. Trage in die Lücken die zugehörigen Werte der Parameter a und d ein!
(Als Dezimaltrennzeichen bitte den Punkt und nicht das Komma verwenden,
also "0.5" und nicht "0,5".
Bei einem negativen Wert bitte kein Leerzeichen zwischen "minus" und dem Betrag eingeben,
also "-2" und nicht "- 2".)

f(x): a = , d =
g(x): a = , d =
h(x): a = , d =
k(x): a = , d =

Punkte: 0 / 0





Die Funktion y = sin(x-c)




Die Funktion y = sin(bx)