Integralfunktion und Flächenbilanz: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<ggb_applet width="1280" height="822" version="4.4" ggbBase64="UEsDBBQACAgIACO4RkUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZy1YBzhbXx/WKmprraJIrRgRKiga…“)
 
 
(10 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<ggb_applet width="1280" height="822" version="4.4" ggbBase64="UEsDBBQACAgIACO4RkUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZy1YBzhbXx/WKmprraJIrRgRKiga/GOUtLG3pvYsrdmKvUeoGbtEEdSo3dZsbUVQ0Rod9kqN1N58+X/fd5/n3nPueZ773Pe8v/c95/c7aH1dLUY6bjoKCgpGuLaGIbn9Qr6Dr1OTn6vWIHMKCk4NuAbMGPVj88m6D5tW2qrqtNQhUeDg55MeTeRGyFTtovzzbrcCfs4DGKi/aNl2vW0qW1MesJ0mrEt/i+EqrbmDrT2fPLW9pN62/PUoijtRV2x5aBnU2hIZaaqelFnXKY4MlGO3sESDj7IWN1j/wB2dnU3NdJeLxd2mNn9+HM6QMMN/rzQbTuS5h/ebDXa+tGrxHbBa9DnecaSEIimz/lJ0X67dL4PJ0jJPHiVcBiqvv/b4dJednZ2D9K3cyMJfIKCJOm/328+fbi+3frluzbS/7ry/Snsp+MNq1LLJ05ab9OLFC10oePH89HAclbbXsD1yitkFF7BH+Y2whnIcLR76zzev+WAptApaUIN999spOUlHIasj+R1QOHSEdb7538Gye/i9e8gvB3OdlItPwSh9c5ZfZNg/PtNzgL7kiCg1NDSMiyM/QSUt6oUYTS0tLf+GxFeSYq8Ov/Wvp7uamMr4+VP1SgRNNFWnMNXxWnHyTtFxL6e1Rhfrtnqt22Q1e1vBwp/Twn8gT7FVETaWqZunpM9+Kr+omOnoIx5RyljngqkGooHVgLB3lu8r5s7ZzGaZqXINdtO1WdfHirUUx3ukKNzdsyKilokT7x47nZ/su9aWG5UxWY5TfjhnVj1LiSkWyUxGR3deY6WnpP9Bee0sWizcLehrXUe3nBNPF+Wr2+JBq7JhsaQoLUrOJqvRrsvDrd9uTPwqeezJWKogUdbJkwbn0dzg04OcUdVLqIQeEgylV0CC9waqn7RuxLpQkPaI467e4cA/PKrHHjNtxCEMJ5/yUILfRRX571930KRWP5L8u3fvDrhrn/38ML2up3Lc4z5V25kFHLl/ovTlfiop6QRynWTbh1nK77vKrwfry19CLwqP0DSjtoum6x0fjcgW3jY4BkiXNY1eWeWnBBM/+BsZYUyuNWZmcoyPjdnWDA0NbcoVBTEyMootm/H39NPA09CaTqafZIul65ouw19uTN01MjEpKdWq06xLKwVcfycCg6Hispwse0Zouju4VEPaxLWN6SKE0EOFu9573tFUvflybqYjsraxXTdeiGmbYzMlH2dS3/ecC5O7Qv9bDzw1aR36TAeYjTpbpApcQAMNZ8ulilbE0LLFK663FEMJ4eFGS96E+Vtw4PlPj8/DnhVhq96E8PV9UFdlTc1oPDDf96zkYKuV9AM2701Q/JfQR0rEbLE3gDxqp/TF/uSyAc0cImCnNU9v4P9ccinM7e3Moxeb83wnyYSNSHTMLSjjUWltGAy4HzPbhIE6KhDhkDryVG0/nfypzHOptmjoUyo4zjVHqRzNbS4NYLh0804AmjZ2wmIG2qlVoyqnoAmNO1ipYbFy6VxRUJqGLYHtmtHyQm+CvQnLpGXtDcEHax1iD6jguehoEV6HxkmrQElBjCQJ+FnImnVo//aS87c9UTVW+pEk91/b+5E00dGd5BjrPLEfoLmJjIrtHO1+d3bxYn0iR+rzGaEcYIvKvedhRc2QdPnPntGvYNVs1wfDmES7/b09B9TRlw8tReZfqL6ITuyvT0KKmBqDNB+whpH5SroXenHGNkN2vKv6WBQNxnNvbax8OiJ2JQUem9ZUZJ4HBHOiFgxAc4jX8pKCN2W9FnpevaVHeWvWIXeMhIA8elaoPZDUzHHDV7NqUVMw1Atqxpawu7SfJKw3jWKGYIVIbL3eiWXui7o76UeiHNz1U3HnxWPezEn9WWEa+aJRPkn7iPpnM20WOsl2snVpbwHmE+Fvb3gzs1lmoOTk5KgMWI64ZfCvrLN8VkeI/2WLYKfJFJkjZ9t1TQ9alRAhdXM/pnyQkMoljXf6/v07JUGvxfbhPQRVhG2okl9uBGEv3o6q/VJPCppzJVLAbropRjUBhE+4Eiea6mvj8q7dl+DKqOpXYVMEL4uf+P7ImZbszzRU8YPE+tKkBGBXZVUVwodQZ0X388UTXaVV9FC0sxcwmAD5rK0YrxEpv/Oo7CaUrJiss2phtjSgFDQgk5N0ZpF2GIRaQIGBv/d1l+5nQh0X/y+kLTlsxCsvdNYa11KOM7ZOzbm7O0n1kxblvI3C+DEegCm4mGS4FXTHXYFgPSHwGpa2EdlhsTKkTF3koj5U/az00140A3KjQ91c/9muwB4s7VavkvdSnP/l+SHkIKr1Bw6OITjlBhWZyy07Oq0WAB3n0rhKxvIFXtkJ38XMTE25DAt/WupJWCnVeW1I19mw2fxXdjfZfnishJ2rScZG/0sIARHQJUMUrRXhvTUpEogUhJFtNNkX+sNeIF/YcpIUkEnvsfWrWRd7FMKCHGcgzMw8Z+9bxvlgm5CN/VQFH4FnnY0gbFrqnb4Fza5F8nKVhdlKKzjgd1gcoB+t/BueABwIVCELhDwcANzhDXx31XObzwkKnxmAj8pjz/qaeh5tMKi5FR7x/XWXdfWaxyoHundGIJ1TPj7SUnRmOXeUJHAJoVWuZ0dZwwzEowrPXbrYFruWFyLzVP36QBI89uwaC5np6W+fWVWpaBsWm6e/KXZcCZE9vvRB272zgk7KSlXU0nV5FaLMeUrJtCTaCUsyR7RRjyo6SGgNzk99jercMGnsJF0osvbnHJiEfqArOr6SAVnGASUxF308HlPKvG3mEWYTmVlivQuaoMoHRdJZiJOj1Yvh227Z9vm+2GNNKjVQnq9jSDEe5/fiRQ55P3w9IRhrVKIX6RCCBlZx7g7idivCc+H8Szm+0oO2bH8Y1XxO9ojy0Lwhhp2T0IsfipE21JTDapfxtmHF4o88SIvDNqKzPn/nYJUKClnXekX/dl+59bBq4f7BZ4qX811UrTrN5MXO18+vbEtdhfaG0C9mhb9eUufWziwF/yWKLaI7pffA8v0QSUs0pcjKNjgFo5WcnXt3tIRNiOn+LUhfmvD7la2PH43oIsKTmeXDbZ2iDQHhAXtrBvQFyoEf8n976ghr3Q0kBFea1XyIDzv1cqLbomI6tw5OoVDRTisyz1buS+TJou62iU27VgjvZ41KtJOszH36EpyXaciSlKD2Eh6/ZQMTcWJMtGN3FcnfeDBTe0/o+rC7Jk/9b9X10AcWywCq+SZZCdeQN9q7ALhMnX4zy4emnmLlPyGyq/gc+w8es3w/esQvz3dd6dKiXLE1UuoOI6QQ44LDopzNkOYRxIL/78dsIqaEh8lgy8YvfHNi26ZV5vPN36LclKlpPbvT+aja7L41rKxZVxgagKzEd/P9ZupkkSUyxWDleBa/7sGMlfnu2JfW9EFMUW1jUo8/PpdzHsmrc37b+P79NMlcMewiIjR8Wdr8HKHQxHzZz8x0G+XOFXN5JaijDkQDffekdQJk/emX0vaa6txc6Jp6h2dKeSafTlyw9neIEF9XQfX5LXAui/Qr5vrVGh6dxXQvV8j1+QjTD+0kg8NxNCuw6vOyNwGoh82bx9nz1PoSbjR7KxKPJPJ9ofxuk385PfFzHZjDpyLKd8b5TZhSUV+fm91VRNND01c7axz0sU6IoPehK0ezGtnm96qt1y/lWjMyRPwIchgVCoMqoWWYy1gh/ahJkvFCl28YPMqHELmzN3FUcNs3hyZ8INLaZJjZhTimgQg1vjsWTeOj9vxVWpO03l96eh5lUb3xfqZRfZYQXSU8A2MoR1be396Qs20tCIO8KjWb+8uL8EgRW6u/b6RVkQ5+s4EkZT2oUG9ty2SyyNrZrupFpKuVgtzmruv+OldtC233MD4Li4jczLbOLKItoFixTPfmKCJRC+rBM1lhySsrK/2Q6zWG2gnnyO8MtFmeCogV8FqI0jZ8ZtT5aldvOGYpkoXP4+vTs6JWrNTPqdVQ+x+mpq9ZE+XKc+bnCFyuECoVI62zPuQGcaSpQK20rUuAikUIGzXfOlQTubiehh6KiGF0r175fgj723aS/rkMQPqyr/KENNNbdvuR0P3+kkRbwiUu0fWm3mA3CXihWB0F948Dgvqb/Ugz9lSFnbQw2+5FdcbUGxbfzxaTVXXzRR4xXiPKmszUfohzRz01tsm9h7eTTnYh0XCrJeZxyvjXAgxUCo70NNu5ObP3l+2HY4iLRoO1zTsmPg7+jrkRiIuaMhmXbWf7SslVA+yNhbRe4QYz/uYTwvfV6kN1afD9J0MqAgokowiv5usiywIKWYk2SPD/X/iaEdcWZW68GtKY9H7FkjekIQ1m7VxqFVAYkGWIqu1gxM+py0M7iU023ICwMTHd2yLW9fxgXiOEtHSkEH+7dIeLH6AMnR8DcR5BtLMMqL7f3xXHe1wurzqNVxHSZf5RxEVAT4dCvcXllV9LgDLYFhKH1BKHQF6OPvM7Kqtj7BchCq+GdCeltZqR11aDH0qDOTtx5N6Z9y8AyhC8kPo/PE0IX8n+653/g4o4UO3XUSTCXeNsmvM8Z5h4lZaqPEV5nFLix6Qcso3PGgIG+fHVo/IBhA5ZhCLts97pmxlwrR2J63zsjS8dCXfluidm65sIjdVv6yEPxNWtVIdC+uVUHLsLZCZrDnIfT56Czn9OVpc6hmxLqI3Gi2NCSFv5sm3rkyf4d5+s6CfVoXIYLDtngzoLdCrxJlhHEg944Wivs4lL+/bqSskc5EubKwZf/p6UOzMS0tsW1IlU/DD6q3mvhPhM1eX5S7+c6t+vEaPl8qe8fxO0DnPvKz8pXd2VPCCdvw7mqKnZ1f6j0iHFO2NbjVW09W/9MWb3PI+kve2/iGxt/nUw5fTJeyGs+ave+svDabakGH85zBZtd0gsAHV9f4e1FNmkn6I+JD58RnuZvxKJE7B80TC8kPtR5zC8tP/h9xrAZqLcS0+/8/1gn2VkrIWJtVtAq9Jwaq9Hjoel37Tb3PzJQuGzA27pFubZbcUZ/WcnYF9H0S/HwTqmip6kdp52jpCXpwGV2ZGS3VU5e7fq86C5KYzMSRDmzy2ehQBTsQvDc6OrtbPfitZ3DEZL0vHrFvrmn3905MInESdhiNDGMiVRnedOA4xmcfaYiFf+J7Q+b56bxqBNTgjjn0YXzt4SC1dx/RW/zd89ar0S+bWnS3OS4R8vd8OUGNea7ESfi3T5yA2kdO8WYC8wE++/JuV2YwQAF1MO2FmCt+IEXcq1NSpq9cIFJJZwgkmMVDA2egj1WdLvBPENORnikdV2axmClDE0Qijukbr58E3vMoFQrGkZIEsrwpFRRavOesdcCpkL+3t8bvT5IaSuNL1tbYhVqYC//U1pLN8Cl8SuOaGTdwEge4Mjxp5UBvBIDhw4uaOf8gLycHhFrjLIP8JfWJBbyTPeGGbzcagvWW6XnFU7di+vhkUV0jrnd7tyLNBFMD+M57OS/9lmsWP44MOM5uFyljVTlFlcCPfaJ/6H5PpD7K6JDspKkGG4P3oiROkYzVEDp+LaXrfOzie1OVbMBAiyPAH5SEXleY0hBPQiV4JShNL5epWqpEsEaJlHeAQsg8IFTZ95A3nHKptrLkYQPMdV4xbpsagIeToBba2PX0u09ln0JJX/oCU4qWIK0X/4va2j8mAfJhAy9GXtW0OsD23ePfb7Bb0McoMtfZMmARBs5FLrqH4H6bITzAOmEjvexJRDtOrHlP1GsgvON1KnWw/rmW5nQLgMQHnRYBqUea5592hWgSdVjsyOKn47k5IrnILz95+nGwLum6urHtQros/kKR+uwFSJ0kd714OuhBxWP6iLQbBJPAfyRo8sPcAhXew+covXdXMIU+VAtjQb/HbteztAwj484BZHR8fzT3jKyDm+TaqnT7tsC4n5kzPP8QebxlKchbYb3D194vYvNwPe6J7oexECAwJkbt/KgiS4OfCXYHSZbpVdIaeGTMhjkMM7IkOCO0pGHXEKQ7kw0ckEHXlCzmZDHUWSQ8Ya+aYwReE5fzLMrAZS6EcFgLz8DnuvX9fkcEEunJJ4A6dGZ/1KP12ETzdtJxG3PjkXtAefClbedpv4tRF7XtD7+PNFiOrGxWxCneOW9RvlG1bnGpc+8/6OxWi/C1DU5hPdlvX8o+2ebeS/nS9+QP/BvsDsbSF/IDAfRQfBKuihh3CCdMIf22NKBj5u2cnvVFTFKZlNrxGw6RBnPqXt5zMMfePEcebvPdziIqa/6K7OwlZgOyXEEsBRxjxPw9K5dI3v3Ns8ckKzpA71Kcl513Jft2rZwjtEddihJVV7GYHI/tjYKCuTOz1Ccwdq/HBp5FanP5ybMbQiTwyovIUIIHO8hi9bZ9GTdRgzOOsksegdKRt7XhntAsUXTU7Xj/3Xx2/O2TFyH8+YtjWIgB8Z2jdksVXfrE0zIHdVrscbMuOYu3huH6QKajnNVT6r9hYRidfU4mPQYHtUfF/ceU3UlMC0jY8VYRdkCoxbtcH4iP7FxaKom/gfqR5xVwS5Gt5dqI1FVRALvZV0qpoeJdtJCxaxfTDGgZQHExztiUHZ6tDya6Vm5XjRR8kn27gSrfd7a2Ffjfk1ll/hadDjPWreW2fHu3Wadd/29BWDi829VmAVFRUbx78N+tvPdwC5/PqKNL0xYlPB4Ac+JXD5slxzcWchEQ6TDQzTq6Hy+uXTU2ceIq71tvIcufCylPkHRc8B0laW4MEuoe8TkZ2evhz1RDAwf7dnuWgZYmXCgKaeh8dOLeNal/xMGNKh/vP+ii1gLLJtdZC130eRWO0nMJtvZqLN+f/jETXwIno3fR7XT4y0qXzGJrts4Pkn8m1e6jHAK9fc/BJnAJKru8nbGw/BJN3WviNTlgs3UywO631ul3jrroBhrq9K3P8Am96UITY7qLQzbfcc/5rCVOf4DuOYTxBKZ8xsBnERpdCsJ8EsGRAZfiEwK71zhI3X/D8kuNm4+jIDe2+8BIbJSX8Yx5JjNIyrzDPosJOr04deGfpdjINPPrUrz0vNMfcaBig0sqpop8u+zs3duKqdDzMe0XZKUWDehgafNEoG5g4VJkDjeyFERkZG7ClsKTxnmmnblzeqPBb15w6WUun8Ts/jt2ImOiAyBlYJMFWhILMxzBgmi18PI81+/mxjq8y4W5GXGu2/aJmgGanw5/29o5npaUWADNESpNzTYFOi1f+KC+NTrm1GHMvM5KCfbXTFlNfUHEruEl/ElWXyfScUo6eY1XqLdktojRhvgM74+TXqVI7mKOWUjUdcEFVNOwDzp4Zvmz6u/At8B8DdS1hLGiSy9sYPwcsaxl50pysR0S8Ji19wiyriFDc0RfLvE/9N0IeHh/+r8LlhXPdlB7rR4CvOUWQJtzg+MVFaGjvIlYhmz4rY6OhcIActQugJzDPmvfvZhpcqSv9WLMafTVhHlUosChEZXTqYwwOSB/KusOdbkGPzgsC6ietPhc82eRU/2bKKQ5yUG5Xhd5aH5P6NnHIPq44TwXkU+0zlfM9I5015nn+33eOnavAuUdeTY0DLNXLY6BMk43vZNYrNuXsf+rK5ifIuwGfJH3s/WMD1s69ISkg86kSq6INlB+AeHh73EhMTuS+MFXeZd/vYe8WlpPSU3TZ/vM9k0pTtelDnIMJ7Cnvq5iYXX2JQ5VJk7sW/gL7S7jzKd2rArxHM8hszM5sJskij7h60wl8jEyea+Tz7j4ewsDBVYuB6jFgGhG4qRRnIO+37L9dtOlUKZA3OhLW0tLxyXg6MA2rW6Yf4EgklAXFlfAuKZMXg7JmLisSycn19fXHHCk9fV+ZFimNG/K5wPH34XTRzkMuCze0NhHirLYhiHbsXvh6YAbkN4mCl3691kdK+U2p8nehN+E72svprc6/bC+jVG+dI5ie+5PnrnsSzS+BjGHn2WPSUe3w8+RbQ7WtrtW9dBktETg82G3hKv8mbKQpuw6h/9HQZ+lVdii+lV+T4ZkDqRSf+cSaUL7mky0aKxjllm4zU1l7S1Ov/YdrbcC+jIF9wTV2NajWbiP8AUEsHCKi5dglyFwAAfRcAAFBLAwQUAAgICAAjuEZFAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAICAgAI7hGRQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzNWG1v2zYQ/tz+ioM+tUBsiyL14sJu0W4oFqBvWLph2IcNlETbbGRJEKnEKfpz9k/2x3YkJVlxGq9ps2JBE1Li8Y733HPHUxfPdtsCLkSjZFUuPTL1PRBlVuWyXC+9Vq8miffs6cPFWlRrkTYcVlWz5XrpsSnz9vvwacpCs1nmS4/OaRrEIp74Mc0mLIrZJJ2v+CSOs4QzMp/7/soD2Cn5pKze8K1QNc/EWbYRW/6qyri2Ojda109ms8vLy2lvfVo169l6nU53KvcAT16qpddNnqC6a5suqRUPfJ/Mfnv9yqmfyFJpXmbCA+NVK58+fLC4lGVeXcKlzPUGMQgS9GMj5HqDfs4T9HNmpGp0thaZlhdC4d7Ro3Vab2vPivHSrD9wMygGfzzI5YXMRbP0/CkJoyD0oGqkKHUnQDpDs17F4kKKS6fLzKwZPI2uqiLlRg2Ec/j0CQI/8OHEDMQNAQ5R5JZ8986nbgjcwNwQOhnmtjMnypwMczKMYpylkmkhlt6KFwqhk+WqwbANz0pfFcIeqXux95qcoFtKfkRhtOeBwxrPfuKfMN/+OrdHPpKRRd20Rw269ZG93hoJIvZl5oJvcpDe6l5wi71kFEJi4vMJiAmMHSiYkBAbGjOw7jFyj7EdiO8G0i0m5o+lAkY9Suzk26I2oBiOnAr9E/vP/t6M2vc3Se8Uutup8uUWDadutegM3K9B5s/jezfJKD0hhN1qNPavVZm+xLiRdOMx7O8NicWsr4GL7kCgNka2qwtabJU5Ip3bWggEQkyoKMbSFQKZ4xCbxAqAhMBCfCQJRGaMgZpcYkAhASNHKNiKFyb4h9k8iyBEXeZl7BIOKIOQArF1kgGiALbWIiYBRYkwhBA3GevEmKURsAgfaAJsDng0o8rkO8WNeGK0HgAlQM1mEkOA2RtAbEo1YX0uQ4BaA4h8iMxWrNVYp12Nxh0JUOMO5l5dKTmguxFFPYTFAinLutXXwMu2eT/V1YF0XmXnLwawuxXBlR6L4U21vwTdzXXtjnywKHgqCmwlzgwTAC54YQqmtbCqSg1D6XTv1g2vNzJTZ0Jr3KXgA7/gr7gWu5corXrb1rS9uxeizQqZS17+ijQxKoxC2F/lJl/7qzyeh85MVlVNfnalkDyw+100FR6KsSmJ9j94N1+5lSBKpgnd/wQItcq4YT2lUzr+IWjs6pa1xJkWF4NvfCdUj/+6kfl4fqpeVEU+YF1XstQ/8Fq3je3L8M5pjE/Py3UhLLb2FsMOJztPq92ZSy3qdL2/qvGpQzhd/1AVVQOYk0GITq67MXWjlTEHG6R8K+NbiSFKMh/WyTywEnZM3WilMOzuaJ2jpPeS+L0ZqWy1QeVjWlrOmHapLaV+1T9omZ13nhIn/6bdpki3gcIo8KN0zZ1rZK9bIf+dlcXsgIaLc9GUonBcKzHcbdUqx/6BwQ8WrRLvuN48L/OfxRoT9x03xVOjNSdqLbpsFJnc4kb3vgOYm+D/gqd3b3OxbkQnzwvbLjv47ao/Zv6N11bVy6banpYX75FZB0ddzHp/FiprZG34CylW83Ox52guFce7IB/vQ+cVepGZsoTQaYOrB7zVm6qxDTGmNo4mj3d1I5T5mHCRAVSDBWdnytKj3WNYwu6PR8FjmACzmkUhttg5g7bkXrWltTGEdWVbcRM/qNIPWJAOwr6HFpdv4Trwot5w06x3KBX8SjTXcLPaXlf5IZoYLOsyVpjadvvIpVoIx0Ld5SPUqNCm84gT+6zRWAjP8TsAqReONpnJTzLPha3zjnwOixuolO1WNDIbnE4tKHjStjtvMJ07q/cFFPlCoDo5VZjPIdhK9GWCTm75zjrLU1UVrcYvQmR0uf8idCfra7tvAgO4I4rt7Ar3JmaykrsRL5Fq8iMm4fWM+izOwTGcvyWu4xhl1XbLyxxK2yidlhrzlhfe/ormvuU+Jw7bwATORaDV/frL4u+/sNqXqSx4+dGZ6BT/Kw0O9h5wYkKnLPZHFxdjX8cRElLLkpDcoAkLj/Lk7WqlhDaRNZ8UGNZofoxFdw/l14ZjdyMOp3/6x8G/UZnMji+FE8tnLh3hUPptJ8zvq3CNcA4szpP480D7R4COe6BJeKfilGI3L/geF35IxD0M36eM79GIAkc7Mo+OwZFhP2ZiY9/1xMF4n9t4Hzp/cL8tvefd9fYoPQEkxaP08eMeStvuuQ77OmjdwqDh24iUHYfO9oV3Bm9CLHb089AFozZEGXFzBVnqfabswMdRH2ddN42tUxSP3+77mTuSLvs/kS6xQASUfDXp4J2ZHEIwG3dh9sup+9/Up/8AUEsHCChurOPEBgAA/RUAAFBLAQIUABQACAgIACO4RkWouXYJchcAAH0XAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgAI7hGRUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAthcAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAAjuEZFKG6s48QGAAD9FQAADAAAAAAAAAAAAAAAAAAUGAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAABIfAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
+
<math>f(x)=x^2-4</math>
 +
 
 +
<ggb_applet width="1280" height="822" version="4.5" ggbBase64="UEsDBBQACAgIAPO5RkUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ0VZBVRTf/uX3GDCJsKmUqPBjVJaaoSASP2UZiNUJKRBmPRgpCiCAtItIR0iIN0iSAhKdyqNjP5f3vf3P+/O2d0523Pv2X3u5/nE9xuuq61GR3uD9tKlS3Qa6ir/AJ9dwLsMTA0cAz124i9dQg5qqGAeeo39wR7HPtSPWYL+ZBe3suLileB193S/6xkf/dODKVDPAMaiilFUxKNpKa+pU2RxSNC3UH4Eh/FD8VWTlbKMdFtkdHfqr2S2g4Qz3nTAValUqVyM1H5WnGJ5S3596Jc+0DswmCzouTrgUncThdrsrn2P33HZqTzcqNt8a5+s4C8PR9NuXNWR1YPVHpFI869/FOgXDhMhiJ17o5TnK1mvh7NeyxdQ0914a1hLGHetlPY9qtyF+JNmQ41K+WvMFAsKCoZHzf1TELW1zjNOna9Y17recOGz7IOcpuqNvyVJ6nzZ7buDz0HVJAY8/ka4nyyld7o3pEM1JOLUePqcV8xUSytqrMG3zsa1DHlP7ow0f3aOMvjInxfiQqMuLz7+0bhClsO41j3fZsf1ExIWvdl4Ll/ifrA5XTJSZLosmJ+rk5YqDbnlOCFV5bVt5fSeJ7E+AL5A2p6nNaAktJQs96U84NNJfWjuu//OM2f05Gj1Q9oL86PD5TTmEi0trTN7dNIWvjZV2q3Dn45M2nkm4OCGcuj66KPOV/hREXeXxYOow5kv7P4nel/+jtmnWhTjvox9OO5gdjI6JKsJh1qStv98mq72+jMHKlYOuay3u9x/sPFmiTmUXQZ7VeHZbvOyh/wWqhkrMnSbqU1zSC50MSfS8JqQ1DndyvH4TK4ZBfQfFiNGM1lK53sQDKKFLCS4DKkxQEdx0VyIkqGzOIQ83IPOd/UqHE6F+Jqy+DV+OcXxITu3Vq0MCwdOpbSBNBdZPygotpHk1JB/30+U8ReBCrLj1/++FCliH8un0xcc0h1BhXkMlYYZjbgOLlQ87TfQkdt/e3Ceq5X00MOjymk2zf/scKcSea01FIqAtDBSJ7uBuzKUQ3t6CIqKQNFSCbraYXyJpitB9NEJ+OkvY5jcsOkGnNKAggPnetSO4HdjD25JtMII0aVyo++idO/VvC9DUlBf7kJhe4KGf/zALwoalyPdlnq3k3e1U2SYiiTufqZHZ/xxmu+IMrj2dvFJPHap6Ob9Ld/jv4v9BJ+/v57iqK/kJptvW6oPS077zGNXxRtbjix8w0hlq0eL8eZHJcK4+pX2ktWIA9L6Gy61F4aXryabX8nqEL+MNTv0fSTv9XoH+SD3/naKAtp2pBhrvwhasp9TvuaHRDSZ15FErdrAmwDavDcbbBpcSBlD4tutEuw919+TAv//MX2drPMs9N78Yvhnsk7yljC2nnaO5+J53X6E0TUhK3qvUwuDqWjMXLPuJjRJd6ZfbiSRzwWpmHjG10IJLGEk8uvbGIKdoVecNC36ppCq446WZERAtkZ8a76Ew9pw/sUcFFk6lPK60X1sn2vKnPvnt8K0exZYPdGdhp5ITIb9zY2OTYXWEuxDnnQQLLZ8ORbtMHkFlwwjfofzIiCD9xQHczUtcVJrJY1nL6zRXcebjdMFQlpieDJBsJJ1sYjw2SciWeA67e4/6j8YRygb2Oy8ZwJBJyIlNNqGz7o9iHhprNzH8MMtkc1EcfsTfgPdBMQu8C32pOmgpqVezPx3uBqeivYvbKkt/bBjNlR7tA067tOXKrd+eZdhgqoCqKwXm3QzwtV6AYA+6z20nEIbw2idliKLhZDGpUjn3u1o5Ju7VMmZ3e2g7SzJPb/PR8iHleFhUy1ESDsCxr6wHAgi/+PYIx0h7r6iuxmRLcBpDNQSSBR9AtK9wL3uFVgPLFhhTgJZ3Vfm9PrgwdVjmXvWo8XYzG6IA4bATc/my2LEYpYq18c3WUoew4tt0ptRe3Jeyv3wRawEtrmqdUz3E2g8fcvooZGZmes/Q7maeBhatPVu2WCCcGjreaYdudnqJ42k4pkxS5x4CQpKGK2W+owyiEKBx+bOKEenQwNqZmo4+2d7gpxrX0yw7w7sImusKBcxW77FsmGR7DITbdCJzhA6ZpP2DVsAQZa1wins1YewiTgQRw3E+mtQdrsmooTg1Z0mrQCNEYcoadvJr8QEyO50cQFDORyJCPIRHVigqkYa72DUFZ11FleC0odD/LjH0DwNASSkIDUbw8SDDLH7HIJg6Ha1/ai22Gej6BGKbqXfdAJqkBZNB9IS63/78513ZHrRBuPlJNJwagRUwfyRiABu4zF3gV4I32lOPK4nmGpWEw1cOLG+CU65Lw+Ag83IlP+VjP24kiufdnJpiPgVxwrinO5fx6B52sJl2l3X2hdGV3dnLXEnOiknhJb6hBKU2OocqOcj1hK3oPjd9WoJlE0272hvdX436H8kh/G8ZpgQPyOUINi7Ppezmtq6M9heiMTtPO2D7hZcpm+A67gpKlqoWpS1GEWLgeLiahDlmXuNL1te9R4iGdcEJdkfL/W+9/vz7mKOpCzz1G5+4of3WXN3sowE8dG2I6L5DSIDG3TVXrMJoiAtFYdgj93TwwvIVF7zUrxx4wbAVJeZJXrP2UfmAX6AawnB22RL2ZP6CPwIyC2vLYuLbrU065aCPohr1b4Fzap5Mw0StnjgnCayevwXYsEdiYe5J3dSxL6WBd/9ubFhu4gpTV7Y/TNakhYPeSOrTr2DNAYI8irvffUUIcpg9j/6/BDyyLLH3QznHiW4L/UgQ7HPJGRGHEvORpCi7qznQHqfkDG2/9GPMrdlbSf8mDMpWgEka1FKPsNxY3qgmqo+9PzzYuodz2IZj7W3oA/9uk8oJKIyWrmnlqc55MHMWWqvq5+n81cBTSBzEb/alSgREvD7Z1nr+Mz+/DluLYIC9TK2TLc6SDn85s2bw9EcyvWLKIbGgNndg2n/xoNfPT339E1N12moOltFv9skhPYHCOe5egG8euqaXm8ajfYQn310QtrusZ68V1RIsyPP0gdhGkp1YjGzGZPz/pu3vz5auOsvvQwBsz03u7LX1BrF+V01Eo4vJGti8/4tuunZ/hTW07GMlA0OVQBfeUE54w8efXn99nBhScOY1XWzat8y0iVlmG2P5KTSXrtShRT9ch0NcPmxGiltOqahdvd+VUtMeopXOdq2lnEpxx6A+T17qeSnAxU2mB4ayQeTk4ccqex+pIyD9OzJyZRQb8jAJKuXEaGGxDE5mVPnXRjIH5ZP9zTGXUNkxQQMcV35ngHXlmmpG640EcNTo9UNfGFNalE39HfkwX+ns9hFm/VU0zdD37B9ngu6Nlsd9SCHsb1FFFTKSRnatPVl1fhHh4eHxxRGgVnScatIpD9Il0vClI1y4CZwkOYADm+KEOY+eg6/yts7F0lG+LZTusg+wkonR3wmVTNL/klOQuU24EK+hPqcn/n6Db9Zvq2bMdMTNCNnyrbQzZdWuYTZuvHBmUPmbsaTV1B2htHyUmSClPBnflWI0rcCmlecqri8BH2Ia/ZsaUGBydiJ7ukPRLTPAsY55/jWrHKA17athiks2Dy/FZ9vAqNVgbFAwQrC8l/XDyEIIco5uC/bwkJ3bJ/wAl1vZlNME7GVFhVDjfXrcfhZrWDbG6/9llNKabxeCMXuAze785Eu+YYhG+XktIOLq9x0uvkVt+pFjGLnOxBZfX5+93hhkT/9VyFDtuChH/NnCVBPuGWcnnvolbegZh8sHoZQ2GLN/Xn6s+yR6RaFakCC5DLo22gcyGVb+YP9XCiqZL4nCAaIwyLG7EIcruFccT9TBRHJCrF+bNxf4cElA0PpEDLj6mfGENQ7HQihANuDD+Ptz6MKpHahw1mzUMUxFgsMJ/Fi4wO4tRCHULt95a0G3+Nq18Hd5qfN4q09YwQVpujsVc5BZb5fDCzv6msr+BPN0GFMr/hf+83nWGF0BRRbFJ1l2h5ckKVuTZg9V6FJBDyYT0k1NpIqnBgZ/WHqg4RGbVdPyGRsagjVwGx9VqbNzmUjmDvMhYi/8qqCSGbpa2aJc68uJeK3U1G9mlsdHXcb16V96X/5A9w29KM1kTEiJ/C+MM/6f2kRYDpQS+oLG9e2sCuCpEDHGGB2nrVDE0suOPBf1YQxAMJKs0H41VIvhEvckA6LlxF+1h8H6UvTUOhN8oCQh6yu73CvtigNDHw9rETC7rLhqFlUIw9fjdE4BlBhMr+LIw9dLDTm1u78HsxeZ4jmXrX6VeNzuAN3HqwnzlXMVIfg79BiW/ULmR52vmME9Nd20INGPcZ91n5L7sC9uiZ//34DCV2zHDlK2EoSpoIQpF3Mwc5gOleuC/ZUaWk3SQl9odlMWPHGXlL7FY7rRgFNVUcms+sY3ISreHaQdcruF0dc1FK2XNme1XzNvZppcSVjyscU5tv4xWbnpQmMsePzDhKGNEyeeAeaxZPJLd2nzxeEtsx22b9kkS5vtzdkU+lXWxF93vBXbcjmtwkXxn0RI2JuyNbWDq1szhg1EsqULOqDknhW7pcAimL/NaiG1Lw6RrJMghogimXBgCMzBWoB41y39HiO+OeXa/Ph7eVlTATwp+3/cq9yghj+vh3PXsmMMHSKAJECyChO5lQHFgA71rJo/9fqADPzcr2BekbuxZ6I4zGjuaJPtK798xdeEXIRRAY/LEwl9ukwgTEywLnI9De51U0+MhZNYbzuk3AmCIKOxWYS91sT/UBT/4T+qAxUPvyGx8BGivP+ngWPBgLUvAVzHYNTGn5x4+yYbQ0tIudMNGup7xMRxubLynaLCE9Bxn9wh4sI3xtzIcTIO80oSWWF8PL0oiynDDKmuFeVpGqash0wujgnuxC+RDOf6GSX7s+C1uyUX6WHRrR/2yXLeBRcqGFbZ/tgML2RwAh/XNEjuVvruX+qLx5HcEjWINPXWKtqZG4xz7WS+p2IaS7NC+gb1YD3Odn/6YW38SIvChdeRtIgh00/woNDC/YDDc7/cz7kGaZ8qrJ5IY9PA8HHo6+vT2SINlvdefxBfqPh2LEwQH03uGXWuuHPa/pOS7RG9Wmzrcr3qWu2n04xP0QYYnn93DcmpA0Kb9geP1hy8N8LlLuKsRajnVxbs9tUyfIxgk3UFVWkXYAj+uMnNnHVcmd5nIn70DO5As+nsxTLhMfh/QTTbHlwS321D4bBfagSmau9LybjvoK8AN9GjVdjeflgROhYuVaShHF/JuotFYYuTkuxFNdpLXCh5AzN7dstuWSgQiAwTOm1urs+MECr+/p+EScQ2XnTtCqoPgULgu+qqqoWHpDgBi2qJaanlbyn3gM/gp0e3vtKkN3tvT1y/zMw/IAUss/ZQuzpmSU+qvLTHxLXi+v6oBUMkxcKuDFZxwzdzg7kihCIeLfEkSrFNWFw9lr2svZYlNtWNsuc8VKo11il6KfL6myOU/W/wiJ7xRUMjM9xwAyawMBVDulgt7MTwKQAqgZkgXKvmeM4QdP6nCt0Nn7MxWdyGHcsecxXOQXSTJDBtdr6zV8VfG4+8AlrMoz1gLiF3VzTYBvxR1YiL+l67cJ6DQw5ls2oMsqDdNm8fk99s930MlDLWYUMGGiIKMbWyQiC5dL5F5uOiYD97ju8pc3etR4GRIUYfqHyQSlziuWI0GbV99LJh0pGsGDPMnQlnZg9DHBJ3Hpm6DLYG5GqtV6i4w04JY0SIu1N3ZV/f9GUB/6cek2Y9epuexCzRATTQarlolnNVsZ/hgaJ+wPInP//5v6yDzDU1J1MePqP6yVAVFasld1QsB3krrJoJhjgYRFhVP8Ofsfrs9Nj7+lHEZMU0Cf8Qn4WDRdzrtUYpG3YH1TjZ1456rKIAQOkuYO8IM1f4nxXhee2Ys6p/diyjQTB5dPVd+0lzBa0Zz7ukpE1s8VWosE2nIQnrTmxDgDZQ4GbZnE03flGTNIss0r2DvEgxDq2tncb51qPzEHCoDG3ix38P0EQu+KsbnFxVM1CSoZ7lw8Ii5kXiw/hs1YpYTvOYia3/8w/n+Vce2KamGOJKfUhf63KHEnVzSzkSisVRcNzI5eLgrDC+TnP8DD3CcYGGkaHGJBi6eZNlM2Cc6vPzQx0BuaEH4+YOuHtvY0oHtCowbAzb4TJ+VjfVVpScq/JBVFXXa2abWlRVCzvetrsAIfJogFnHidSLYL8+BrVG0kh4GCJC7YCLDczi2HwIwHG0G96QoAxj5UpfYCnPUuTcDDJExFeAiLe2kmAU9mzX7c2xVsic79zk9OBd2tJmF26Vuip5/fVxAsarW0FUh2lZ/MzSxxCWOvgd2JsOMLFq9ufQqHX9CU82N4HXTX33WG0OOWglSOC8S+sP+/gJTbq7SrCwSwbriK8d1u6zcXCdlZpvsphfMQ/qtVmT1H5Wu0WHYktRoScYT8Vj7jKLOTQ+u1GGtUndV/Y20jk7W9VlWfpoRmRHgpnmWD1Ye8lcqsWokUW/X8YSsUlKTHx5PyNWpPxssbAtw9UzTuRcWEXXMVNiAy9tymfwXe5dbC9Nf/pSGw5EmY21fg1GDIVuq2nAig5DZ2aINMRzbiYB2MtuHlNayWmHNnVvyXEy2sG5hPg/5ceErGhGatknsOtg6o0XXl6WfW009mC6gneLYOwbu2BhevVyPY4ECbM8PWxsHF5m/0LGA+0RQ2w/Xo7SBtHBGOdGpNorSL1tvIOkqo3KI/hGsx1Ug96p9ZjPde6L/l6DyGY1aJ8Fe3uqyse8PL3q8wdDJLSaDzJYkLvtRICD06WTcqGEnKYz7WN+wE4IsyGsRxQq6D2DAhVc5Uvgzz4XQ1odmf3v7mmr+bhlCOBI0ZV2yVjFwmTOq3gnbAv/nz3olMnM5m5ESYv77YTqz/sHHCjw7rPv7twrPDXIS4mVNSsxzjBovLgzk3s3sgNBb9689KEQqpZno3MKM0mQnrdJwBIo9Ui6SjGUCDYAhD4RMR7eCkrB61N1n06uDEr9cCo4ml/atHKmqWWryf7VOjMpN/xn0BLnE8aqhciJeFWZPa5nEnB3c9SfhNQBX6/7z4AKpkV7rtrnZR+C52pFhG+EOcEycvCDv1x9JLbnPTCh04zofjIdoIFjep1NwAVTlH3ELMGc8rFcMqR1j3p0y/SbkuVpWIXKwPd1+PXcp/VMMpFKMdX4orlwa/vf3YuY8lG117IHiBbwSa6kwx2aenv57+334LAbxpCrO6E6naq5ss5SXFcKIV2zdaVlocNc2RRyojpqLx/hODZZWUDiQP/AW62UW2iGX7xnV9qK3F9zcqmhXiOMfV6k9OfU6jh4VHlcjWOxnBzi39StTzcVMy3zMu4FoK4MaE/nT1fbFSmVIT7MuafommOZhGyO355Jv+HuxeA98Eyk6qecXSpyIK47iQzHIFVm/lk0dTsyfoO7t7ve7RHQ4TktDGrAr6WTYiS0t/h+ebUH1utcfaju+2BPOGRIDaoo9FE3UYtCj45NmayrxN/nmJyGurX0ZioJ/ex1DjI6cFpnaeQVAml5PUJ1jvP8/QLDfIlQFA293vJqB4mRjJNWkQDmQSS2M4q427zrFbu7PSTndO3oY5Gh359E8tH3lOZBsIldKoIHtEXoo/ggO9TaH3FIp0pZFYD+x3UFI6ttHnDRK8xpFlne7Eq9zSgrmF8WOZtHId7aVR+e97UlTdQsdiKyauCrdFeYlND88r1oIa/bzAFBZn+EI68JHntomSRYX6kJO4UtT/h1m9su3OsKvU+bbCQfe4qUQcj+/xUHtMoKMbvI8Z87hXQSim5/X4qaLrT03XNeWhTU4S5keS7esKZEGVOOXr4ZB+ztr7+RQHtZN2bYEnk+tyRYkafdOtJRKNpP+VoP/+o5QnH4Gw9VyZ90POlokB3qXtM96ejRL1/YtdWQzcMhV+xpsedWlpAOLxK1hrlmkVp1KeFWKPcFumRk8Ix4SRMzdbPjdAZCbLy7YSQ1YMMy2MHW0Wv+6x74f4vApRDk0i907cnJQHNEW5+djLnnGJOWbEdOSPTSC4IzlSqVe4GNfTCryv+HMq5jlWQVfhJDVfZlM/0VFl41Jsgupab5Ehb+TK3zOKhk8e8gnlO3KvVD0v0jYXvkAmUjxevcv1IkZy2Ga623DBUaOOjTSN4/T7yJfiZoqkc8Kxbr0FSz07Et69vzkqWb0OcmRvVLz07KacBN5udkJstG1owoiBcK9GaQ4pYg4csJlYYxWcNIatOZo3ThR1ZaspDM5Pajx97U5rAELLmNS/6kJeFxJLyq/JeFZbEdoNET7/UuSdun876egenCm/mJojLQxztjZj3Elzf1c2Xqppq3PIAl73jTZPFD5psvNp0flfnJsXpcOK2kmCJ2uStBdGzbPXW4Ka0QA6JJ1dURO1QRwUOu7z57a/pDL3j7u8HkxuS2J360xaw64jT7sYNHIlPPNNYkUAKVBZ0ae+uX/FiILKLmZt+rotkVxk12Ng48tVJk/+D9uSrgVijPEElzxY3cr2ff+tui5SqX2gMNN94dYo0jnM/IpubsXrPFCJkztdKeJaAzfc7LjSXEewKcfEs/ObPkp077RZkIuNAONqIpd6PXwqdmSOmDfPdmXqIOD/KOmq0vjsvXqyQLDf/xf9oWKPKftJ+bf5bCZZw/sctYN7/5P3G9bTzx+M5XfeHRsTXsvaFDw3LyAVMYDamowELnYE8xMgnMTglNjjiK/qUOx9pZmJ1esR+hvtjV01vpmihsXK+/2hjjzJ72t+siP6jr55DqlfjixLrkIPvG4UpOX8NdAzrrKP0TXnp9EAGfXr7EL7C069PC798tc7L8kDVK8hONHGRPtStDR/rx3NK8k39yn5Vb/yH5menk5Mue1Hh/pboFpu82qjS+d2cl0l4CAEcxyZAE2lv94w14eAwKeDk8DNfYryejrFgV24nyGtrfOwsq8D/TLTK+69X1eYivsBl/qbO+DwUKh986Zz9RVaHd9Pml33e/eWcfi9yJS/K6cM9Gx11EW32yZIGL6ckPsqnOv4/Tt4byp3cThMvmL8zildSB9rx5BkGtt1sPOeyuqZWSaxCksZlPGN+EGac+laOh5Ntde4mCtOzi7PK3kysVxcMm9KQQ6NRNV0mu1EimBpuJOzVc0PzgZt6XebTo6eegmx/RQ5e4ppyupb/aaerRL4gCKHRAmZDbJv87rOtznyy4HhT2IJy6XDmaJiJC9lhSV3dkwhDQpKs45Jg1/6o+fTNWcQ7IYVO3dBVcYyZYsFNtWoYzBETJ3vroaCXnWv2oVW+TSHZVa1UPQjDWxAmidE0OXlZ+r5hW7IDHla/3BMEq9eMFyqSD/3diIK2rM7JvNiz8fj9U9RfXhZKaK6r44K27LLLQsvdpthPT9TO+0Y/RSzWkQJ9WiHC9TPvpFUW/13YoHDH4mGjm5GHQL69sE942FZPHEh0ssJemxfXNstzTqe0jLmH0bRgRuvbrIl84Q0zhank1+LOS4rQ6qcxtnYzrJ/uNjxlPFt9spHZfdsRE73du2ZyxX/8k5NOsFAVRdRc0EyJ8vg0aQC9g7GOYssb+WgitH7ouoWxKC6/uZoXe2v/M6Bsh4w2m6V66KOk/S1kld09VQhksMRe7RHH4+8++PD/7JhJz1sNReb3O7DUGoGyeHQfQlrOLTAj94t0szbWWfHaaq/Z9IGkxHThGaTNZDjRArWw6PTSag3Fu3/XCp6jE34bR081Hkv+cCY5L0hbOhFTKxkvah/UGM1ZqF1nPxrRjg24fHj6zU67HVbl2JG1lrrxqaNW2Aj2tiGMV/gWxHVtWOBpAuJ8vCXgoYwjpFvvv9sOFyYigtFzY+LXmptU2wDT0qL7fimveI2Ew2QVER+vfS0jZH/lI7Xneh7972lEJHu6LUSLejtoyR4CWNiMoR+Hs0e+egYbtP9uOjSjDNXwhgmj/66tX9hX5scY2l+NeYYlOMECFwGuVAiWRadJcnHd9I6DfNe5rGk+9fRhWtlqpoedwSG65rlROvSfLnqvF0zCiyjXHIh504jvAC+S9Xxx1G58RLBsRQn1HIBJxcVSGXoIrsIOgxm9aY9ELKsgXikIK9AwRK/RtOqPJt25wWVnudJC25dyx/DCpT120RJ8iuReGX2Lwu4dFeXn0zDCuGm8p12DlDToe3AqzPHvqYCTlTRk0ElTZKwURdZmWrOZ31UF6nFHzVSUPDyTTjaFr9jl5poJSm0StSu0AmM16oLq3xkKdWP8SFuW9pCB7JU5f5UqL2kIDTj40ZYD6/CdcYlDERWdvW+mGPdtXN3zPypAPBHQNpPdm6z12GXxBNPe6NSfGFLdXx3EiP+2x490bs936n/QTuEcIBIJ6ZESQv9AyEG3IvEw2ZdSNBJ2Ewr8UMLhlqun3SOaTl8gt9o9bky1Gx3Ruguks5VbjZ6buO6gt5ps3IVwSj12PxttE/d9iTgM3/0B+dBS99iuSbBjiG+0UgqPpMucSomfwLR7a7JeWMyV2OiV6SgzSKJYtm8/IYnNMZ1KYNg220vXIU0jyREmFMGmNaJ17qgyDhcySziSgzi+qHlfhSS20D3C6FYQr7oENSR5Ehkd0EAcnTB1/JxjEYe6XCww8XXWCLd9NfLinjUYDwoKi3sg2FOxTP7l7Cyf1M4+aRZinGwj50UXwZRtTEuqwx1wapVQsGHCQVv41ZFSXqUyIG2NHFaX8opVoHq/rgIGeK3JUWaRdhropAlKQcRc/ryn517JalAfdEFeN65lEzKregE9aKITi9/Khf89bVihn/9/aHrgdgr/t+cx3QTdpX6n87Y27rsOV4QVRgSWs/Z99mMLbytUoT6v1rNxr6Hh6j+VLm9MotOrFYhGqLlZpW/6cb6wG99vwV6hiqVK/LYjS36wer6UjEN3vWhQ941Gm8A+TgLqnPCLP04eiWw8WTT2OFz8kHj6niszqp2QjVpVh8nvfVdWtcSIlH4kRA+PpulJToXNx74b1JHCVf9OzjRS3C3QtmSWxb6BMmnhAHusy2Wz62vSyoO0pHbQn+WjcxrPfehQ9M/CmgVViMOWOzFA7Ljy1i2pW7aYS8eD222PvxGcpV79ZLtNzVz31s6O09KwIHcpmQ8ZFfUTVMJY3TxUVaydHxKyqRL7FHZwTnblXT6hyoip6RLw0lDVVilWsiD8H1BLBwhoZZ3jcyAAAAshAABQSwMEFAAICAgA87lGRQAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAgIAPO5RkUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtb9s2EP7c/oqDPqVAbIuiXgu7RbuhWIC+YemGYR82UBJts5ElQaQSp+jP2T/ZH9uRlGTZSbymzYoFTUiJxzvec88dT50/324KuOSNFFW5cMjUdYCXWZWLcrVwWrWcxM7zZ4/nK16teNowWFbNhqmF4099Z7cPn6Z+oDeLfOHQhKZexKOJG9Fs4oeRP0mTJZtEURYznySJ6y4dgK0UT8vqLdtwWbOMn2drvmGvq4wpo3OtVP10Nru6upr21qdVs5qtVul0K3MH8OSlXDjd5Cmq29t0RY2457pk9tub11b9RJRSsTLjDmivWvHs8aP5lSjz6gquRK7WCydxAwfWXKzW6GYSo5szLVSjrzXPlLjkEreOHo3PalM7RoyVev2RnUExuONALi5FzpuF4049z00S348CQmPikQCNVI3gpeqESWd01qubXwp+ZfXqmTGJm1RVFSnTKiFI4PNn8FzPhVM9EDt4OIShXXLtO5fawbODb4fAyvh2u29FfSvjWxmfYsiFFGnBF86SFRJRFOWywQgOz1JdF9wcqXuxQ4CcoltSfEJhtOeAhR3Pfuqe+q75tW6PfCQji6ppjxq06yN7vbU4Tr7MmvdN/tE7vfPusBePIkh0eD4D0XExAwUdEWIiowe/ewztY2QG4tqBdIux/mOYgEEPYzP5tqD1TpFg5FTgnpp/5vdm0L6/SXqv0N3JlHtYDP0jFq2BhzXou0n04CZ9Sk8J8e80Grl7RaavMHYk3XgM+wdDYj7rS+C8OxDItZbtyoLiG6mPSBNTCoFAgAkVRli5AiAJDpFOLA9IAH6AjySGUI8RUJ1LPlCIQcsRCqbgBTH+8U2ehRCgLv0ysgkH1IeAAjFl0gdEAUypRUw8ihJBAAFu0taJNktD8EN8oDH4CeDRtCqd7xQ34onRugeUANWbSQQeZq8Hka7UxO9zGTzU6kHoQqi3YqnGMm1LNO6IgWp3MPfqSooB3TUv6iEsBkhR1q3aAy/b5P1UVQfSeZVdvBzA7lY4k2oshhfV7j60F9fedfloXrCUF9hUnGsmAFyyQhdMY2FZlQqG0mnfrRpWr0Umz7lSuEvCR3bJXjPFt69QWva2jWlzi895mxUiF6z8FWmiVWiF0F/q5groL/UoIdZKVlVNfn4tkTuw/Z03FZ7JpVMSjn4cuLYrQUKmMR1+PExGmTHNeUqndPxDsDRc37EWW8v8cvCMbbns0V81Ih/Pz+TLqsgHpOtKlOoHVqu2Mf0Z3jiNdulFuSq4QdbcYdjpZBdptT23iUWtrg/XNT51+KarH6qiagAz0guw31l1Y2pHI6MPNki5RsY1EkOMRD6sk8QzEmZM7WikMOj2aJ2jpPeSuL0ZIU2tQeVjUhrG6L6pLYV63T8okV10nhIr/7bdpEi2gcAo8KOwTZ5taPetkP/Oynx2QML5BW9KXliqlRjutmql5f7A30fzVvL3TK1flPnPfIVp+57p0qnQmhU1Fm0u8kxscKN93wHMdPB/wdPbtzlfNbyTZ4Vpmy38ZtUdE//Ga6PqVVNtzsrLD8isg6POZ70/c5k1otb8hRRr+QXfcTQXkuFNkI/3ofMSvch0UULolMbVAdaqddWYzhgTG0edxdu64VJ/VNjIAKrBcrPVRelk+wQWsP3jxHsCE/CNZl7wDbbNoAy5l21pbAxhXZqeXMcPqvQjlqODsO+gxeU7uA6sqNdMd+0dSgW75s0ebkbbmyo/RBODZVzGAlNrBZpLNeeWharLR6hRoUnnESd2WaOwDF7gRwBSLxht0pOfRJ5zU+Ut+SwWN1Ap2w1vRDY4nRpQ8KRtd16v9+yhgCJfCFQnJwv9XQQbgb5M0MkN2xpnWSqrolX4ZYiMLndfhvZkXWXHfld/d+KOMDKza9wb68lSbEe8RKqJT5iE+xl1K87eMZy/Ja7jGGXVZsPKHErTJp2VCvOWFc7ugmau4T4jFltPB85GoFX9+qvi77+w2pepKFj5yZroFP8rDQ72HnBiEuzfW9T/OoqQgBqSBOQGS/zgKE3eLZeSKx1Y/T2BUQ2TYyS6fyS/NhrbG2E4+9M9jv2NwqR3fCmcWD1zYfmG0u86YfZQdWuEs2dwnkS3A+0eATrqgSbBvWpTiq08Zztc2CEPdzB8nyq+QyP0LO1IEh6DI8N2TMfGvOuJg/G+MPE+dP7gels4L7rb7SQ9BSTFSfrkSQ+l6fZse70PWrcwaPg2ImXHoTNt4b3BmxCDHb0dOm/UhUgt7nWF+5aqA59GXZzxXLe1Vk80frvrZu7Juez/xLnY4OBR76s5B+/15BCC2bgHM19N3f+pPvsHUEsHCEnWb73GBgAAAxYAAFBLAQIUABQACAgIAPO5RkVoZZ3jcyAAAAshAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgA87lGRUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAtyAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADzuUZFSdZvvcYGAAADFgAADAAAAAAAAAAAAAAAAAAVIQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAABUoAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="true" showMenuBar="false" showToolBar="false" showToolBarHelp="true" enableLabelDrags="false" showResetIcon="true" />
 +
 
 +
__NOCACHE__

Aktuelle Version vom 11. Oktober 2016, 11:45 Uhr

f(x)=x^2-4