temperierte Stimmung: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: ===Die Gleichstufig temperierte Stimmung:=== <br><br>Es wurde eine Tonskala postuliert, die für den j-ten Ton <math>v_j</math>, mit 2 noch zu bestimmenden Konstanten ...)
 
(Die Seite wurde geleert.)
 
(2 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
===Die Gleichstufig temperierte Stimmung:===
 
  
<br><br>Es wurde eine Tonskala postuliert, die für den j-ten Ton <math>v_j</math>, mit 2 noch zu bestimmenden Konstanten k und l folgende Gleichung erfüllt:<br><br>
 
 
<math>log \ H(v_j) = k\cdot j + l; j = 0,+-1,+-2,+-3,...;</math><br><br>
 
 
Des weiteren sollte folgendes gelten: <math>\textstyle H(v_{12}) = 2 \cdot H (v_o);</math> da man die Oktave in 12 Halbtonschritte einteilen wollte. Deshalb gitl für l: <br><br>
 
<math>l = H(v_0) und \ k = log \ 2^\frac {1}{12};</math><br><br>
 
Daraus erhält man die Formel zu Berechnung aller Töne in der gleichstufig temperierten Skala:<br><br>
 
 
<math>log \ H(v_j) = log \ 2^\frac {j}{12} +  log \ H(v_0);</math><br><br> wenn man nun substituiert mit q := <math>\textstyle 2^\frac {1}{12}</math> erhält man:<br><br>
 
 
<math>H(v_j) = q^j \cdot H(v_0); </math> &nbsp;&nbsp;&nbsp;j = 0, +-1,+-2,+-3, … <br><br>
 
 
 
Es war also nun ein Kompromiss nötig: man verzichtete etwas auf die Reinheit der Intervalle und schuf dafür Intervalle mit gleichen Abständen, unabhängig von Tonarten. Jeder Halbton sollte als das gleich Frequenzverhältnis haben.<br><br>
 
 
Um  die Oktavspanne in 12 gleich große Töne aufzuteilen, ergibt sich für jeden Halbtonschritt:<br><br>
 
 
<math>\textstyle \sqrt[12] {2}</math> oder <math>\textstyle 2^\frac {1}{12}</math>, was einem Wert von 1,05946 entspricht.
 
 
Daraus folgt für die (wichtigsten) Intervalle bei beliebiger Wahl des Grundtons <math>A_0</math>:
 
A und B sind 2 Variablen für beliebige Töne und geben nicht die beiden Töne a und b wieder.<br><br>
 
[[Bild:temp.png]]<br><br>
 
X ist nicht transzendent, sondern algebraisch.<br>
 
Die algebraische Gleichung lautet:<br><br>
 
<math>
 
x^{12} - 2 = 0;</math><br><br>
 
 
Allerdings wird die Quinte, die vorher durch die rationale Zahl <math>\textstyle \frac {3}{2}</math> dargestellt war als unreine Quinte durch die irrationale Zahl <math> \textstyle x^{12} = 2^\frac {7}{12} = 1{,}498307077</math>.... wiedergegeben.<br><br>
 
 
Die Gleichheit cis=des, dis=es, … wird in der Musik als enharmonische Verwechslung beziechnet.<br>
 
Alle Intervalle (außer die Oktave) sind nun unrein, d.h. sie sind nicht schwebungsfrei (alle Quinten sind zu tief, alle Quarten zu hoch).<br>
 
Der Vorteil des Systems ist jedoch, das endlich ein System geschaffen wurde, das geschlossen ist und in dem alle Tonarten spielbar sind.<br>
 
Die gleichstufig temperierte Stimmung ist eine geschlossene Temperatur, da sich der Quintenzirkel nach der 12. Quinte schließt und nicht, wie z.b. bei der (groß-Terz) mitteltönigen Stimmung nach der 12. Quinte eine sogenannte Wolfsquinte entsteht.<br>
 
 
[[Benutzer:Grieninger_Sebastian/Facharbeit/Kettenbrüche| ''weiter zum Exkurs Kettenbrüche, ein Argument für die gleichstufig temperierte Stimmung'']]<br>
 
 
[[Benutzer:Grieninger_Sebastian/Facharbeit/Vergleich der Stimmungen| ''weiter zum Vergleich der Stimmungen'']]<br><br>
 
[[Benutzer:Grieninger_Sebastian/Facharbeit|zurück zur Übersichtsseite]]
 

Aktuelle Version vom 1. März 2011, 21:54 Uhr