Lösung von Teilaufgabe c) 2.: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: == Berechnung derjenigen Punkte, für welche die Tangente an den Graphen von f<sub>2</sub> durch den Ursprung verläuft == === Verwendung der Tangentialgleichung === ...)
 
(Verwendung der Tangentengleichung)
 
(18 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 2: Zeile 2:
  
  
=== Verwendung der Tangentialgleichung ===
+
=== Verwendung der Tangentengleichung ===
 +
Hier rate ich wieder zur Verwendung der Tangentengleichung.<br />
  
 
: <math>y = f^{'}( x_0)\cdot ( x - x_0 ) + f ( x_0 )</math><br />
 
: <math>y = f^{'}( x_0)\cdot ( x - x_0 ) + f ( x_0 )</math><br />
  
 +
Zwar fehlen hier einige feste Werte, die man in die Gleichung einsetzen kann, doch diese hat man in allgemeiner Form durch die Funktion und die erste Ableitung gegeben.<br />
 
:<math> y = ( x_0 - a - 1 )\cdot ( -e^{a + 2 - x_0})\cdot ( x - x_0 ) + ( x_0 - a )\cdot e^{a + 2 - x_0})</math><br />
 
:<math> y = ( x_0 - a - 1 )\cdot ( -e^{a + 2 - x_0})\cdot ( x - x_0 ) + ( x_0 - a )\cdot e^{a + 2 - x_0})</math><br />
  
Zeile 27: Zeile 29:
 
   
 
   
 
:: <math>\Rightarrow ( x_0^{2} - 2\cdot x_0 - 2 ) = 0</math>
 
:: <math>\Rightarrow ( x_0^{2} - 2\cdot x_0 - 2 ) = 0</math>
+
 
 +
Nun hat man als Lösung eine Quadratische Gleichung erhalten. <br />Diese löst man am besten mit Hilfe der Mitternachtsformel.<br />
 
Lösen quadratischer Gleichungen mit Hilfe der [http://de.wikipedia.org/wiki/Mitternachtsformel?title=Mitternachtsformel&redirect=no Mitternachtsformel] <math> x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2a}</math>
 
Lösen quadratischer Gleichungen mit Hilfe der [http://de.wikipedia.org/wiki/Mitternachtsformel?title=Mitternachtsformel&redirect=no Mitternachtsformel] <math> x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2a}</math>
 
   
 
   
: <math> x_{1,2} = \frac{2\pm\sqrt{4--8}}{2}</math><br />
+
: <math> x_{1,2} = \frac{2\pm\sqrt{4--8}}{2} = \frac{2\pm\sqrt{4+8}}{2}</math><br />
: <math> x_{1,2} = \frac{2\pm\sqrt{4+8}}{2}</math><br />
+
: <math> x_{1,2} = \frac{2\pm\sqrt{12}}{2}</math><br />
+
: <math> x_{1,2} = \frac{2\pm\sqrt{4\cdot 3}}{2}</math><br />
+
: <math> x_{1,2} = \frac{2\pm2\cdot\sqrt{3}}{2}</math><br />
+
: <math> x_{1,2} = {1\pm\sqrt{3}}</math><br />
+
  
 +
:: <math>  = \frac{2\pm\sqrt{12}}{2}= \frac{2\pm\sqrt{4\cdot 3}}{2}</math><br />
 +
 +
:: <math>  = \frac{2\pm2\cdot\sqrt{3}}{2}= {1\pm\sqrt{3}}</math><br />
  
 
: <math>\Rightarrow x_{1} = {1 + \sqrt{3}}</math><br />
 
: <math>\Rightarrow x_{1} = {1 + \sqrt{3}}</math><br />
Zeile 42: Zeile 43:
 
: <math>\Rightarrow x_{2} = {1 - \sqrt{3}}</math><br />
 
: <math>\Rightarrow x_{2} = {1 - \sqrt{3}}</math><br />
  
 +
Die beiden nun erhaltenen x-Werte müssen nun nur noch in die Funktion eingesetzt werden.<br />
  
 
+
[[Bild:Tangente_b1111.png|400px|right]]
 
:      <math>f_a(x_1)=\;</math><br />  
 
:      <math>f_a(x_1)=\;</math><br />  
: <math>= f_a(1 + \sqrt{3})\;</math>  
+
::: <math>= f_a(1 + \sqrt{3})\;</math>  
: <math>= ( 1 + \sqrt{3} - a )\cdot e^{a + 2 - ( 1 + \sqrt{3})}</math><br />
+
::: <math>= ( 1 + \sqrt{3} - a )\cdot e^{a + 2 - ( 1 + \sqrt{3})}</math><br />
:                      <math> = ( 1 + \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 + \sqrt{3})}</math><br />
+
:::                      <math> = ( 1 + \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 + \sqrt{3})}</math><br />
:                      <math> = ( \sqrt{3} - 1 )\cdot e^{4 - 1 - \sqrt{3})}</math><br />
+
:::                      <math> = ( \sqrt{3} - 1 )\cdot e^{4 - 1 - \sqrt{3})}</math><br />
:                      <math> = ( \sqrt{3} - 1 )\cdot e^{3 - \sqrt{3})}</math><br />
+
:::                      <math> = ( \sqrt{3} - 1 )\cdot e^{3 - \sqrt{3})}</math><br />
:                      <math>\approx 2{,}601</math><br />
+
:::                      <math>\approx 2{,}601</math><br />
  
 +
::::                  <math> \Rightarrow B_1(1 + \sqrt{3} / 2{,}601)</math> 
  
:                      <math> \Rightarrow B_1(1 + \sqrt{3} / 2{,}601)</math>
 
  
  
  
:      <math>f_a(x_2) =\;</math><br />
 
:      <math>= f_a(1 - \sqrt{3})\;</math>
 
:                      <math> = ( 1 - \sqrt{3} - a )\cdot e^{a + 2 - ( 1 - \sqrt{3})}</math><br />
 
:                      <math> = ( 1 - \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 - \sqrt{3})}</math><br />
 
:                      <math> = ( -\sqrt{3} - 1 )\cdot e^{4 - 1 + \sqrt{3})}</math><br />
 
:                      <math> = ( -\sqrt{3} - 1 )\cdot e^{3 + \sqrt{3})}</math><br />
 
:                      <math>\approx -310{,}164</math><br />
 
  
 
:                      <math> \Rightarrow B_2(1 - \sqrt{3} / -310{,}164)</math>
 
  
  
 +
[[Bild:Tangente_b2222.png|400px|right]]
 +
:      <math>f_a(x_2) =\;</math><br />
 +
:::      <math>= f_a(1 - \sqrt{3})\;</math>
 +
:::                      <math> = ( 1 - \sqrt{3} - a )\cdot e^{a + 2 - ( 1 - \sqrt{3})}</math><br />
 +
:::                      <math> = ( 1 - \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 - \sqrt{3})}</math><br />
 +
:::                      <math> = ( -\sqrt{3} - 1 )\cdot e^{4 - 1 + \sqrt{3})}</math><br />
 +
:::                      <math> = ( -\sqrt{3} - 1 )\cdot e^{3 + \sqrt{3})}</math><br />
 +
:::                  <math>\approx -310{,}164</math><br />
  
<ggb_applet width="615" height="522"  version="3.2" ggbBase64="UEsDBBQACAAIALYJODwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VdLk9s2DD43v4Kj0247tvWw/JixN9Okl8xs2oOTHHJohpJgm12JVEVqV95fXxCkZDvbTHe3yXSag0cUAILAhw+gvHrZVSW7hUYLJddBNA4DBjJXhZC7ddCa7WgRvLx6sdqB2kHWcLZVTcXNOkjGcWDlrbh68cNK79Ud4yWZfBBwtw5M00LAdN0AL/QewDjxlpca5bztRCl4c/gt+wNyo48K5+ONrFvTO8mr4lro/nVC59WlML+IW1FAw0qVr4NZipHj6gM0RuS8XAfT0EnidRCH0zMlihKr3atG3CtprPnR+RYljGlxDwhIbGWrCeW5gjYvRSG4tMlQHGjE2J0ozN4emKJLELs9xprGofOWK9UUm4M2ULHuIzSKwhnPl0mUztJoGS+Xs1nADk6VzMfzRTqfzmfxPFmmyQIxxIAxksU4SadoukzDKQa/nOMer4pQFScp7kGLZbKYpe5ouN2AMVhJzXgHusdz14hiANy+vNGvVHkU1UpI85rXpm2IBYkXbczBnoa4NTbHn+WuBC+LsUp7yG8y1W0cbolz/e5Q0xaKJ9u9VqVqWIMbUsRq55+Ze5KNDXSwCskmJAvvwzod9IgeWdAzc0+yKoV0ofnEoz7rKOyPEZpZATq35O2xKXkGSIaAtVKY6/4FSXPjM42c/a9tlWHTnNJmcBl9JZeryWd8W91AI6F0rJJY2Fa1mt1a9rrSURwF5KLCV6fwgHBbrPcYgJMWsGugj9u1nIOLtGfM/Uy8mvRB2Bg0xpobHB2Yj7G52NY22FZ2VXBjJbZvSqgAm8oQG2RbQSPyARke2NPwiNYfFI99BDRWFI2IgZ1+0xF31H+BMDhN6j3H1TjytOAHnBenOZK3t6rwJ3s7XdJgqQSOxFFqZ2LFO+xpu+KZVmVrYJMjgvJa5dzQ6HTF9qMgCkNr29k5YxcH3EyLrejg2Gl/P3+O5DV7ZIkEranDzGkvcYlFJuRxstQuRxy3AI6AvS2rMWfq4oEhSCtXjn8sDDwszDxaxAv7m6bLcJr+t2UiMJ3kpA37q+VccZZ1h9eStjdeH+b2E8d7r6tpddFdsjW76NiI8Uv2I4PfL5CR7CfGUdJdBmzyALltK6kNglOHj67lGX5nQ+Np8IWPhC98NM++zBW6EYY4X32Kg3+bCV0Fz83l+e3g55y2zToKx/OEunWUROgC7+V791FEhu4WtFc+HZ08DaHoe0Ao7gGKx7Mw+nrwvP8ewOlHPT2fgkyuqorLgkle4TnX2JcEh7BfwYyHFh7GI0ciB0JrelXmnHkXD2C2TT6gmH27mdR/0KURVcM+nluMk370LDv0xLs/dfeYNOBP6Wy0+9YSFf5zyIV5fgXiBxUonlCB4n9WgX4MHobh+M1KMDn9nqT/XP4/59VfUEsHCBNBW6gUBAAApQ4AAFBLAQIUABQACAAIALYJODwTQVuoFAQAAKUOAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAATgQAAAAA" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /><br />
+
::::                      <math> \Rightarrow B_2(1 - \sqrt{3} / -310{,}164)</math>
<br />
+
  
<ggb_applet width="595" height="433"  version="3.2" ggbBase64="UEsDBBQACAAIAM0IODwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VdLj9s2ED43v4LgabeFbVIP2wvYGzTpJcCmPTibQw4NKGlssyuRqkjtyvvrOyQlP7INuk5TtA0MQ9TMaDjzzTdDafGyq0pyD42RWi0pHzNKQOW6kGqzpK1dj+b05fWLxQb0BrJGkLVuKmGXNB5H1Mlbef3iu4XZ6gciSm/yXsLDktqmBUpM3YAozBbABvFalAblou1kKUWz+yX7DXJrDorg442qWzs4yaviRprhduL3q0tpf5L3soCGlDpf0mmKkePqPTRW5qJc0oQFSbSkEUtOlCiKnXarG/molXXmB+drlBBi5CMgIJGTLSY+zwW0eSkLKZRLxseBRoQ8yMJu0eU8RZcgN1uMNYl58JZr3RSrnbFQke4DNHpJ5+l4xtIp41HE2TROrijZBU2UJuOUzWb8apryK57EqDIYMEYSx2OUTqdJxFOWcM7xoYNqOmcpT6KYxVP8hZ3hfgXWYiENER2YAc5NI4s93u7mjXmly4Oo1lLZ16K2beNJEPeild25zRC2xqX4o9qU0MsiLNIW8rtMd6sAWxxcv9vV/hEfT7Z5rUvdkMbliVBt+msWrt7GBbq3Yt6GeYveh3O61/OryFv4axau3qqUKoTWJ86HrDkbtpGGOAE6d9wdsClFBsgFSlol7c1wg5y56zPlwf7ntsqwZ45Zs3fJv5LLxeQTui3uoFFQBlIpLGyrW0PuHXlD6XwcBeSywtug6AERrli3GECQFrBpYIg7dFyAy2vZMXE/ES8mQxAuBoOx5hYnB+ZjXS6usy12lVsVwjqJa5sSKsCesp4Nqq2gkfkeGUHdbrhF228UjfsI/FTRfkLs2dk/dMAd9Z8hDA6TeitwNe5bsRQ7HBfHOXpvb3XR79zbmdLPlUriRBylbiRWoltSvxKZ0WVrYZUjgupG58L6yRmK3U8Czpiz7dyYcYsdPuwXa9nBodP+fPwcyGu3yBIFxvgOs8e9JBQW2SOPg6UOOeK0BQgEHGxJjTn7Lt4zBGkVyvGXhYGnhZnxeTR3/yS9Ykn675bJgxkkR204nCynipOsOzyVjDvwhjDXHwUee13tVxfdJVmSi46MiLgk3xP49QIZSX4gAiXdJSWTJ8itW+XbgB47fHYtT/A7GRrnwceeCR97Ns8+zxV/IuzjfPUxon83E38UfGkuX94O/ZwzrllHbDyLfbeOYo4uppQ8hncibxhOQXfi+63j8xDi3wJC0QBQNMbXl68Hz+23AM4w6v31HGRyXVVCFUSJCve5wb70cEj3EkwEc/AQwQOJAgitHVRZcNa7eAKza/I9itl/fiYd9WLPsN1Ausdjd89JAX5XwcaE9yxZ4UdDLu3Z6Lvp5vG/fYJ+fgb6+f8J/WH+eTr/o/BPjt8j/adW/6l5/QdQSwcIg1ollA0EAACcDgAAUEsBAhQAFAAIAAgAzQg4PINaJZQNBAAAnA4AAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAABHBAAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 
  
<ggb_applet width="615" height="430"  version="3.2" ggbBase64="UEsDBBQACAAIAMwKODwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VdLj9s2ED43v4LQabeFbeotAfYGTXoJsGkPbnLooQEl0Ta7EqmK1K7sX98hKcmv3TTeGmjRgyFqOBzOfPPNjDx/21UleqSNZIIvHHeKHUR5LgrG1wunVatJ4ry9ezNfU7GmWUPQSjQVUQvHn3qOlrfs7s13c7kRT4iURuUzo08LRzUtdZCsG0oKuaFUWfGKlBLkpO1YyUiz/SX7g+ZK7jesjQ+8btVgJK+KeyaH15m5ry6Z+ok9soI2qBT5wolC8BxWn2mjWE7KhRNgK/EWjoeDo00Q+Xp3Ixq2E1xp9b3xFUgQkmxHARBPy+YzE+ectnnJCka4Dsb4AUoIPbFCbfSFIZikbL0BXwMvsdZyIZpiuZWKVqj7jTYCjLrJNI39NMJpFMbm2NbuBHjqJm4SxXEceGkQB+C3BIfBEw/OYBz5Qeh5aRrDEk71e3iapGnip26c4Ah0kv5u+rikSkEqJSIdlQOg64YVI+L65YN8J8q9qBaMq/ekVm1jaOD3oqXamtsc1Oggf+TrkvYyD9K0oflDJrqlBc63pn/d1uaI8SdbvxelaFADB0KIet0/M/s0OtrRUQsbHWw0ehva6Ljvpp7RMM/MPo1Wybh1rQ/cHaJ28XANk0gLwLhm74BNSTIKbHBQy5m6H16ANQ99pK7V/7mtMqiaQ96MJt0rmZzPTgg3f6ANp6WlFYfEtqKV6FHT16bO+FHQnFXwajd6QIhO1idwwEoLum7o4LetOQuX2cWH1D0Rz2eDE9oHCb7mCnoHxKN0LLq2FdSVXhVEaYkunJJWFKpKGTbwtqINy0dkiKNvgyva/iJv2ntg+oowPWJkZ39ojzvsv0AYaCf1huj6cHtakC00jMMYjbWPouhv7vVkaTpLxaAnTkLdFCvSLRyzIpkUZavoMgcE+b3IiTK90ya77wUuxlq3041GL7Zw2CxWrKP7Snu+Ae3JqzbAEk6lNBWmDmuJcEiyQR5aS21jhH5LqSXgoItqiNlU8cgQoJVNx98mhp4nJnYTL9G/IExxEP67aTJgWslBGQ6z5XjjKOoO5pLUI29wc/WFwODrarO66W7RAt10aILILfoe0d9vgJHoB0RA0t06aHaG3KrlpgycQ4Mv5tI/yeURfkdN4zL48DfCh7/Cs2PfXuaKmQijn+++eM4/jcSMgtfG8vpy6Puc1MU6wdPYN9U68V0wATN2Z7+KjKKdgnrmm6v9yxByzxG6tFb+AxAF0yBIgySK/BDHfpRatKA+oOX5PvbjKE5CPwmvh9yn/wOzhilgnpcgk4uqIrxAnFRwzz2UrIGD6S9kRLCGBxHX8suC0KphK7PGehNnMOv6H1HMXm5Xp6Pnau3+wkzs0XyObtvnuLkzNf21fncaHP2TWx1pP85YBf81cqZenxfvLC/FBXkpXpmXbyiR4RvcJiZ0r5GZoW1ux2a6O7R3zQzMDr8/zZ+0/k/q3V9QSwcIhWpWpUMEAADWDgAAUEsBAhQAFAAIAAgAzAo4PIVqVqVDBAAA1g4AAAwAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAQABADoAAAB9BAAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
+
Nachdem beide Berührpunkte nun einzeln gezeigt worden sind, hier eine Grafik in der Beide gleichzeitig zu sehen sind.
 +
[[Bild:TANGENTE_b1b2.png|400px]]

Aktuelle Version vom 26. Januar 2010, 20:12 Uhr

Berechnung derjenigen Punkte, für welche die Tangente an den Graphen von f2 durch den Ursprung verläuft

Verwendung der Tangentengleichung

Hier rate ich wieder zur Verwendung der Tangentengleichung.

y = f^{'}( x_0)\cdot ( x - x_0 ) + f ( x_0 )

Zwar fehlen hier einige feste Werte, die man in die Gleichung einsetzen kann, doch diese hat man in allgemeiner Form durch die Funktion und die erste Ableitung gegeben.

 y = ( x_0 - a - 1 )\cdot ( -e^{a + 2 - x_0})\cdot ( x - x_0 ) + ( x_0 - a )\cdot e^{a + 2 - x_0})


mit:\;

y = 0\;
x = 0\;
a = 2\;


0 = ( x_0 - 3 )\cdot ( -e^{4 - x_0} )\cdot ( -x_0 ) + ( x_0 - 2 )\cdot ( e^{4 - x_0} )
 0 = ( x_0 - 3 )\cdot ( e^{4 - x_0} )\cdot ( x_0 ) + ( x_0 - 2 )\cdot ( e^{4 - x_0} )
 0 = ( x_0^{2} - x_0\cdot 3 )\cdot ( e^{4 - x_0} ) + ( x_0 - 2 )\cdot ( e^{4 - x_0} )
 0 = e^{4 - x_0}\cdot ( x_0^{2} - 3\cdot x_0 +  x_0 - 2 )
 0 = e^{4 - x_0}\cdot ( x_0^{2} - 2\cdot x_0 - 2 )\;\;\;\;\;\;\;\;|e^{4 - x_0}>0
\Rightarrow ( x_0^{2} - 2\cdot x_0 - 2 ) = 0

Nun hat man als Lösung eine Quadratische Gleichung erhalten.
Diese löst man am besten mit Hilfe der Mitternachtsformel.
Lösen quadratischer Gleichungen mit Hilfe der Mitternachtsformel  x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2a}

 x_{1,2} = \frac{2\pm\sqrt{4--8}}{2} = \frac{2\pm\sqrt{4+8}}{2}
  = \frac{2\pm\sqrt{12}}{2}= \frac{2\pm\sqrt{4\cdot 3}}{2}
  = \frac{2\pm2\cdot\sqrt{3}}{2}= {1\pm\sqrt{3}}
\Rightarrow x_{1} = {1 + \sqrt{3}}
\Rightarrow x_{2} = {1 - \sqrt{3}}

Die beiden nun erhaltenen x-Werte müssen nun nur noch in die Funktion eingesetzt werden.

Tangente b1111.png
f_a(x_1)=\;
= f_a(1 + \sqrt{3})\;
= ( 1 + \sqrt{3} - a )\cdot e^{a + 2 - ( 1 + \sqrt{3})}
 = ( 1 + \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 + \sqrt{3})}
 = ( \sqrt{3} - 1 )\cdot e^{4 - 1 - \sqrt{3})}
 = ( \sqrt{3} - 1 )\cdot e^{3 - \sqrt{3})}
\approx 2{,}601
 \Rightarrow B_1(1 + \sqrt{3} / 2{,}601)




Tangente b2222.png
f_a(x_2) =\;
= f_a(1 - \sqrt{3})\;
 = ( 1 - \sqrt{3} - a )\cdot e^{a + 2 - ( 1 - \sqrt{3})}
 = ( 1 - \sqrt{3} - 2 )\cdot e^{2 + 2 - ( 1 - \sqrt{3})}
 = ( -\sqrt{3} - 1 )\cdot e^{4 - 1 + \sqrt{3})}
 = ( -\sqrt{3} - 1 )\cdot e^{3 + \sqrt{3})}
\approx -310{,}164
 \Rightarrow B_2(1 - \sqrt{3} / -310{,}164)


Nachdem beide Berührpunkte nun einzeln gezeigt worden sind, hier eine Grafik in der Beide gleichzeitig zu sehen sind. TANGENTE b1b2.png